Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 12: 1344964, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38344290

RESUMEN

Bamboo is considered a renewable energy bioresource for solving the energy crisis and climate change. Dendrocalamus branddisii (DB) was first subjected to sulfomethylation reaction at 95°C for 3 h, followed by Fenton oxidation pretreatment at 22°C for 24 h. The synergistic effect of combined pretreatment dramatically improved enzymatic digestibility efficiency, with maximum yield of glucose and ethanol content of 71.11% and 16.47 g/L, respectively, increased by 4.7 and 6.11 time comparing with the single Fenton oxidation pretreatment. It was found that the hydrophobicity of substrate, content of surface lignin, degree of polymerization, and specific surface area have significant effects on the increase of enzymatic saccharification efficiency. It also revealed that sulfomethylation pre-extraction can improve the hydrophilicity of lignin, leading to the lignin dissolution, which was beneficial for subsequent Fenton pretreatment of bamboo biomass. This work provides some reference for Fenton oxidation pretreatment of bamboo biomass, which can not only promote the utilization of bamboo in southwest China, but also enhances the Fenton reaction in the bamboo biorefinery.

2.
Bioresour Technol ; 286: 121392, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31075663

RESUMEN

The sugarcane bagasse (SCB) was pretreated by the sequential Fenton oxidation and sulfomethylation pretreatment (FSP) for reducing the lignin inhibition in enzymatic saccharification. The FSP showed the delignification of 67.76% and the glucan retention in pretreated solid of 97.81%. Compared with sulfomethylation pretreated SCB (SP-SCB), the lignin surface coverage and surface hydrophobicity of FSP-SCB decreased by 1.84 and 4.84 times, respectively, led to enzymatic accessibility increased by 20%. Using the cellulase loading of 20 FPU/g glucan, the 72 h yields of glucose and xylose were 76.24% and 64.83%, respectively, which was 1.3-2.0 times higher than that of sulfomethylation treated SCB alone. Fenton oxidative reaction as a pre-step will help sulfomethyl group to easily and more introduce on aromatic ring, thereby accelerating the delignification.


Asunto(s)
Celulasa , Saccharum , Celulosa , Hidrólisis , Lignina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA