Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Evolution ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271183

RESUMEN

In many animal species, including most birds, parental care is performed by both parents, which has important implications for mate choice (good parent hypothesis) and parental investment strategies. Partitioning the variance in measures of parental care into heritable and non-heritable components is important to understand the evolvability of parental investment and its potential role in mate choice. We employed an automated system to monitor provisioning behavior at 817 blue tit nests over 10 years (totaling ~3 million visits). Daily provisioning rates of males and females were moderately repeatable between years (Radj = 0.16 and 0.15 respectively), which was almost entirely explained by additive genetic effects. While this degree of heritability is sufficient for parental investment to respond to selection, we argue that the modest level of repeatability provides limited potential for a 'provisioning phenotype' to be used as a criterion in mate choice. Daily visit rates were positively correlated between pair members, but after accounting for shared environmental factors this relationship became clearly negative, thereby providing support for models of partial compensation. Visit rates also differed substantially between years, and between days within a year. Thus, it is important to account for these variables when comparing parental investment between individuals. Our results highlight the interplay between genetic, social, and environmental influences on provisioning behavior.

2.
Environ Sci Pollut Res Int ; 31(40): 53437-53446, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39192148

RESUMEN

Feeding rate is an important factor influencing the carbon and nitrogen input and greenhouse gas emission from aquaculture systems. However, the quantitative relationship between feeding rates and GHG emissions is still poorly understood. In this study, we conducted a laboratory-scale experiment to examine the impact of feeding rate (0%, 2%, 4%, 6%, and 8%) on the CH4 and N2O emissions from a pond rice-fish co-culture system. The results showed that the total amount of CH4 emission did not significantly differ when the feeding rate was no more than 6%, but increased more than four times when the feeding rate reach to 8%. The amount of N2O emission showed a linearly increasing trend with the feeding rate. The emission factors of CH4 and N2O was significantly higher for 8% feeding rate than other feeding rates. The variation of CH4 emission was primarily attributed to the ratio of mcrA/pmoA in the sediment and the contents of biological oxygen demand (COD) and dissolved oxygen (DO) in the water; and the variation of N2O was primarily affected by the available nitrogen in the water and sediment and the content of DO in the water. The overall emission of CH4 and N2O showed an exponential relationship with feeding rate. The total yields of fish and rice did not continuously increase when the feeding rate exceeded 4%. The lowest emission intensity per unit yield was reached at the feeding rate of 2.99%. These results can provide a reference for the determination of low-carbon feeding strategy for pond rice-fish co-culture system.


Asunto(s)
Metano , Óxido Nitroso , Oryza , Metano/análisis , Animales , Óxido Nitroso/análisis , Acuicultura , Estanques , Peces , Técnicas de Cocultivo , Nitrógeno/análisis
3.
Environ Toxicol Chem ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39056977

RESUMEN

Traditional approaches for monitoring aquatic pollution primarily rely on chemical analysis and the detection of pollutants in the aqueous environments. However, these methods lack realism and mechanistic insight and, thus, are increasingly supported by effect-based methods, which offer sensitive endpoints. In this context, daphnids, a freshwater species used extensively in molecular ecotoxicology, offer fast and noninvasive approaches to assess the impact of pollutants. Among the phenotypic endpoints used, feeding rate is a highly sensitive approach because it provides evidence of physiological alterations even in sublethal concentrations. However, there has been no standardized method for measuring feeding rate in daphnids, and several approaches follow different protocols. There is a diversity among tests employing large volumes, extensive incubation times, and high animal densities, which in turn utilize measurements of algae via fluorescence, radiolabeling, or counting ingested cells. These tests are challenging and laborious and sometimes require cumbersome instrumentation. In the present study, we optimized the conditions of a miniaturized fast, sensitive, and high-throughput assay to assess the feeding rate based on the ingestion of fluorescent microparticles. The protocol was optimized in neonates in relation to the concentration of microplastic and the number of animals to increase reproducibility. Daphnids, following exposures to nonlethal concentrations, were incubated with microplastics; and, as filter feeders, they ingest microparticles. The new approach revealed differences in the physiology of daphnids in concentrations below the toxicity limits for a range of pollutants of different modes of action, thus proving feeding to be a more sensitive and noninvasive endpoint in pollution assessment. Environ Toxicol Chem 2024;00:1-11. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

4.
Animals (Basel) ; 14(14)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39061509

RESUMEN

The rapid progress of the modern world has resulted in new materials and products created at an accelerating pace. As such, nanoparticles have widespread applications and often find their way into the aquatic ecosystem. In the case of freshwater ecosystems, one of the commonly used bioindicators species used for pollution assessment is Daphnid magna. The Organization for Economic Co-operation and Development (OECD), and other organizations such as the European Chemicals Agency (ECHA) and Environmental Protection Agency (EPA), have set guidelines for acute toxicity testing in daphnids that are severely lacking in terms of information on the characteristics of the exposure vessel when studying the adverse effects of nanoparticles (NPs). Understanding the toxicity mechanisms of nanomaterials is imperative given the scarcity of information on their adverse effects. Furthermore, miniaturization of nanotoxicity assays can reduce the number of daphnids used, as well as the cost and nanomaterial waste, and provide results even at the individual animal level with enhanced reproducibility of testing. In this study, the impact of the exposure vessel on the observed physiological changes of daphnids was investigated for a silver nano ink. Exposures in eleven commercially available vessels; nine made of plastic and two made of glass were compared for 24 h. The effect of surface to volume ratio of the exposure vessel and the animal number or "crowding" during exposure was investigated in the context of miniaturizing biomarker assays as alternatives to traditional experimental setups in Daphnid magna. Toxicity curves showed differences depending on the vessel used, while a novel feeding rate assay and the activity of key enzymes were assessed as physiology endpoints.

5.
Mar Pollut Bull ; 203: 116441, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703629

RESUMEN

Microplastics (MPs) in the aquatic environment pose a serious threat to biota, by being confounded with food. These effects occur in mussels which are filter-feeding organisms. Mussels from the genus Mytilus sp. were used to evaluate the ecotoxicological effects of two MPs, polypropylene (PP) and polyethylene terephthalate (PET), after 4 and 28-days. Measured individual endpoints were condition index and feeding rate; and sub-individual parameters, metabolism of phase I (CYP1A1, CYP1A2 and CYP3A4) and II (glutathione S-transferases - GSTs), and antioxidant defense (catalase - CAT). MPs decreased both condition index (CI) and feeding rate (FR). No alterations occurred in metabolic enzymes, suggesting that these MPs are not metabolized by these pathways. Furthermore, lack of alterations in GSTs and CAT activities suggests the absence of conjugation and oxidative stress. Overall, biochemical markers were not responsive, but non-enzymatic responses showed deleterious effects caused by these MPs, which may be of high ecological importance.


Asunto(s)
Ecotoxicología , Microplásticos , Mytilus , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/toxicidad , Microplásticos/toxicidad , Mytilus/efectos de los fármacos , Monitoreo del Ambiente , Glutatión Transferasa/metabolismo , Polipropilenos/toxicidad , Tereftalatos Polietilenos , Estrés Oxidativo , Catalasa/metabolismo
6.
Materials (Basel) ; 17(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38730923

RESUMEN

This study investigated how process parameters of laser cladding affect the microstructure and mechanical properties of WC-12Co composite coating for use as a protective layer of continuous caster rolls. WC-Co powders, WC-Ni powders, and Ni-Cr alloy powder with various wear resistance characteristics were evaluated in order to determine their applicability for use as cladding materials for continuous caster roll coating. The cladding process was conducted with various parameters, including laser powers, cladding speeds, and powder feeding rates, then the phases, microstructure, and micro-hardness of the cladding layer were analyzed in each specimen. Results indicate that, to increase the hardness of the cladding layer in WC-Co composite coating, the dilution of the cladding layer by dissolution of Fe from the substrate should be minimized, and the formation of the Fe-Co alloy phase should be prevented. The mechanical properties and wear resistance of each powder with the same process parameters were compared and analyzed. The microstructure and mechanical properties of the laser cladding layer depend not only on the process parameters, but also on the powder characteristics, such as WC particle size and the type of binder material. Additionally, depending on the degree of thermal decomposition of WC particles and evolution of W distribution within the cladding layer, the hardness of each powder can differ significantly, and the wear mechanism can change.

7.
Heliyon ; 10(8): e29826, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38681660

RESUMEN

The feeding rhythm is one of the key factors determining the success of artificial breeding of S. paramamosain. To understand the feeding rhythm of the different zoea larva developmental stages of S. paramamosain, the feeding rate, digestive enzyme activity, and expression of metabolism-related genes were investigated in the present study. The results showed that the S. paramamosain feeding rate has strong diurnal feeding rhythm, being significantly higher at 10:00-14:00 from stages ZI to ZIV. While the feeding rate peaked at 14:00 on Days 10 and 11, the peak shifted to 18:00 on Day 12. The activity of digestive enzymes amylase, pepsin and lipase decreased at night but increased in the daytime, showing a single-phase rhythm similar to that of the feeding rate, suggesting that the digestive enzyme activity was closely associated with the feeding rate during the larval development. Compared to pepsin and lipase, the activity of amylase was the most consistent with feeding rate. In particular, amylase activity peaked at 18:00 on Day 12. Due to its synchronicity with feeding activity, the activity of amylase could provide a potential reference for determining the best feeding time during zoea stages in S. paramamosain breeding. Moreover, the relative mRNA expression of metabolism-related genes SpCHH and SpFAS at most tested points was lower from 10:00 to 14:00, but higher at 18:00 to 6:00 of the next day. On the other hand, the expression patterns of SpHSL and SpTryp were converse to those of SpCHH and SpFAS. Our findings revealed that the S. paramamosain zoea has an obvious feeding rhythm, and the most suitable feeding time was 10:00-18:00 depending on different stages. The feeding rhythm is a critical aspect in aquaculture, influencing a series of physiological functions in aquatic animals. This study provides insights into the feeding rhythm during the zoea development of S. paramamosain, making a significant contribution to optimizing feeding strategy, improving aquafeed utilization, and reducing the impact of residual feed on water environment.

8.
Ecol Evol ; 14(4): e11198, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38571809

RESUMEN

Microplastics are widespread pollutants, but few studies have linked field prevalence in organisms to laboratory uptakes. Aquatic filter feeders may be particularly susceptible to microplastic uptake, with the potential for trophic transfer to higher levels, including humans. Here, we surveyed microplastics from a model freshwater shrimp, common caraidina (Caridina nilotica) inhabiting the Crocodile River in South Africa to better understand microplastic uptake rates per individual. We then use functional response analysis (feeding rate as a function of resource density) to quantify uptake rates by shrimps in the laboratory. We found that microplastics were widespread in C. nilotica, with no significant differences in microplastic abundances among sampled sites under varying land uses, with an average abundance of 6.2 particles per individual. The vast majority of microplastics found was fibres (86.1%). Shrimp microplastic accumulation patterns were slightly higher in the laboratory than the field, where shrimp exhibited a hyperbolic Type II functional response model under varying exposure concentrations. Maximum feeding rates of 20 particles were found over a 6 h feeding period, and uptake evidenced at even the lowest laboratory concentrations (~10 particles per mL). These results highlight that microplastic uptake is widespread in field populations and partly density dependent, with field concentrations corroborating uptake rates recorded in the laboratory. Further research is required to elucidate trophic transfer from these taxa and to understand potential physiological impacts.

9.
Biology (Basel) ; 13(3)2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38534434

RESUMEN

To clarify the allometric growth pattern and hunger tolerance of Hemibarbus maculatus Bleeker larvae, the morphological lengths of their functional organs were measured continuously and their primary feeding rates under a state of starvation were studied. A control group and starvation group were set up for this study, and 10 larvae were sampled from each group every day in order to study their allometric growth pattern and starvation tolerance. The results indicated that the Hemibarbus maculatus larvae opened their mouths for feeding at 4 days after hatching, and that the yolk sac disappeared completely at 11 days after hatching. The Hemibarbus maculatus larvae preferentially developed their heads, fins, and eyes, related to the functions of feeding, balancing, and swimming, in order to cope with complex environments. The growth inflection points for the head length, pectoral fin length, dorsal fin length, eye diameter, eye spacing, snout length, and body height were characterized by total lengths of 10.93 mm, 11.67 mm, 11.67 mm, 13.17 mm, 16.53 mm, 15.13 mm, and 15.13 mm, respectively. Prior to and following the inflection point, positive allometric growth was observed in all organs. After the inflection point, the dorsal fin continued to maintain positive allometric growth, while the others changed to isometric allometric growth. A growth inflection point was not observed for trunk length or the lengths of the tail and anal fins. The trunk length always maintained negative allometry, while the tail and anal fin lengths were reversed. The growth inflection point of the tail length was at a total length of 13.68 mm. Before and after the growth inflection point, negative and isometric allometric growths were observed, respectively. According to the relationship between the total length and number of days after hatching, the growth inflection point of the Hemibarbus maculatus larvae was concentrated at TL = 10.93-16.53 mm, which was observed 14-20 days after hatching. The point of no return for the Hemibarbus maculatus larvae was 12-13 days after hatching, and the ratio of days after hatching in the mixed trophic period to the endotrophic period was 1.75, indicating that the larvae had strong hunger tolerance. Therefore, when considering a water temperature of 22.66 ± 1.56 °C, 4-5 days after hatching is the best time to cultivate in the pond, and it should not be carried out later than 12 days after hatching.

10.
Waste Manag ; 172: 25-32, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37708809

RESUMEN

Inadequate organic waste management have detrimental impact on the environment and on public health. Black soldier fly (BSF) larvae composting is a biological treatment for biodegradable waste that align with circular economy principles. The bioconversion efficiency of bio-waste into larval biomass is influenced by various factors, such as substrate type and the process parameters employed in the larval rearing process. In this study, the influence of these parameters on survival, material reduction (Mat.Red), waste-to-biomass conversion efficiency (BCE) and larval yield per rearing unit was investigated through two sets of experiments. In Experiment 1, the impact of larval density in five distinct rearing substrates was evaluated, while the effect of larval feed dose and substrate depth was assessed in Experiment 2, using a model substrate (dog food). In Experiment 1 it was found that higher larval density lead to an increase in BCE and larval yield, up to a threshold (around 6.25 larvae cm-2). Surpassing this threshold led to the production of smaller larvae, while the yield remained relatively consistent. In Experiment 2 it was found that supplying the substrate in a shallow layer (1-1.5 cm depth) and providing a low feed dose (0.1 g volatile solids (VS) larva-1) led to higher BCE and Mat.Red, albeit with a reduced overall yield per unit. Increasing feed load and substrate depth reduced the conversion efficiency, Mat.Red and larval survival. This study enhances the understanding of the effect of various process parameters used in the BSF larvae treatment, and how they interrelate.


Asunto(s)
Compostaje , Dípteros , Administración de Residuos , Animales , Perros , Larva , Alimentos
11.
Environ Toxicol Pharmacol ; 103: 104259, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37660959

RESUMEN

Numerous microplastic-related studies have investigated the impact of plastic materials on the marine food chain. In this study, Manila clams were exposed to microplastic (MP) of various polymer types, shapes, and concentrations to determine the ingestion selectivity and adverse effects caused. Benzo[a]pyrene was introduced as the second stressor to investigate the role of MP as a vector of contaminant. The result of a 2-day acute exposure showed that clams are more likely to ingest those in sphere shapes due to their similarity to microalgae. The feeding rate continuously declined when clams were exposed to at least 2to/L particles. Additionally, co-exposure of MP and B[a]P resulted in higher DNA fragmentation but lower catalase activity compared to single exposure to MP. Our study revealed that the uptake of MP by clams is not only determined by its shape and concentration but also by the presence of existing contaminants.

12.
Insects ; 14(9)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37754714

RESUMEN

Research in recent years has shown that some species of predatory mites, considered to be typically associated with soil and litter, can also be found on plants. Such species include Blattisocius mali, which is an effective predator of acarid mites, nematodes and the eggs of moths and which can disperse by means of drosophilid fruit flies. Apart from soil and litter or storage, it has also been recorded on the bark of apple trees and the leaves of strawberries, thus suggesting its possible predation of/feeding on herbivorous mites and insects. Our goal was to examine whether B. mali could consume different development stages of two polyphagous herbivores, the two-spotted spider mite, Tetranychus urticae, and the western flower thrips, Frankliniella occidentalis, as well as the drosophilid fruit fly Drosophila hydei. In 24 h cage tests, single, starved B. mali females consumed all types of prey offered, i.e., the eggs, males and females of spider mites; the first-instar larvae and prepupae of thrips; and the eggs and first-instar larvae of fruit flies. The potential for B. mali to prey upon these insects and mites was confirmed. However, to estimate whether it can also effectively reduce their population, additional tests on the predator's survival, fecundity and prey preference are needed.

13.
Environ Sci Technol ; 57(8): 3218-3227, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36791268

RESUMEN

In the marine environment, discarded cigarette filters (CFs) deteriorate and leach filter-associated chemicals. The study aim was to assess the effects of smoked CFs (SCFs) and non-smoked CFs (NCFs) particles on individual life-history traits in the deposit-feeding polychaete Capitella teleta and extrapolate these to possible population-level effects. C. teleta was exposed to sediment-spiked particles of NCFs and SCFs at an environmentally realistic concentration (0.1 mg particles g-1 dw sed) and a 100-fold higher (10 mg particles g-1 dw sed) concentration. Experimental setup incorporated 11 individual endpoints and lasted approximately 6 months. There were significant effects on all endpoints, except from adult body volume and egestion rate, in worms exposed to 10 mg SCF particles g-1 dw sed. Although not statistically significant, there was ≥50% impact on time between reproductive events and number of eggs per female at 0.1 mg SCF particles g-1 dw sed. None of the endpoints was significantly affected by NCFs. Results suggest that SCFs are likely to affect individual life-history traits of C. teleta, whereas the population model suggests that these effects might not transform into population-level effects. The results further indicate that chemicals associated with CFs are the main driver causing the effects rather than the CF particles.


Asunto(s)
Poliquetos , Productos de Tabaco , Contaminantes Químicos del Agua , Animales , Femenino , Sedimentos Geológicos , Contaminantes Químicos del Agua/análisis , Reproducción
14.
Animals (Basel) ; 12(22)2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36428423

RESUMEN

Feed and water efficiency are important traits to improve beef cattle production's economic and environmental sustainability. This study evaluated residual feed intake (RFI) and residual water intake (RWI) and their relationship with performance, ingestive behavior, and carcass traits in Caracu beef cattle. The data were analyzed using a generalized linear model with least squares means. The ingestive behavior, performance, and carcass traits were influenced by sex (p < 0.05). Males showed higher dry matter intake (DMI), average daily gain (ADG), mid-test metabolic weight (BW0.75), rib eye area, and rump fat thickness than females, besides spending more time drinking and eating. Low RFI animals exhibited higher DMI than high RFI animals. Low RWI animals ingested 3.89 L/d of water further than high RWI animals. The interaction between sex and RWI influenced the DMI, BW0.75, and backfat thickness. The ingestive behavior of low and high RFI animals was similar, although high RWI animals visited a smaller number of drinkers than low RWI animals. Water intake positively affects productive efficiency, and the combined use of RWI and RFI may help improve the selection of more efficient animals contributing to reducing the costs of beef cattle production and improving environmental sustainability.

15.
J Dairy Sci ; 105(9): 7564-7574, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35863925

RESUMEN

Residual feed intake (RFI) is commonly used to measure feed efficiency but individual intake recording systems are needed. Feeding behavior may be used as an indicator trait for feed efficiency using less expensive precision livestock farming technologies. Our goal was to estimate genetic parameters for feeding behavior and the genetic correlations with feed efficiency in Holstein cows. Data consisted of 75,877 daily feeding behavior records of 1,328 mid-lactation Holstein cows in 31 experiments conducted from 2009 to 2020 with an automated intake recording system. Feeding behavior traits included number of feeder visits per day, number of meals per day, duration of each feeder visit, duration of each meal, total duration of feeder visits, intake per visit, intake per meal [kg of dry matter (DM)], feeding rate per visit, and feeding rate per meal (kg of DM per min). The meal criterion was estimated as 26.4 min, which means that any pair of feeder visits separated by less than 26.4 min were considered part of the same meal. The statistical model included lactation and days in milk as fixed effects, and experiment-treatment, animal, and permanent environment as random effects. Genetic parameters for feeding behavior traits were estimated using daily records and weekly averages. Estimates of heritability for daily feeding behavior traits ranged from 0.09 ± 0.02 (number of meals; mean ± standard error) to 0.23 ± 0.03 (feeding rate per meal), with repeatability estimates ranging from 0.23 ± 0.01 (number of meals) to 0.52 ± 0.02 (number of feeder visits). Estimates of heritability for weekly averages of feeding behavior traits ranged from 0.19 ± 0.04 (number of meals) to 0.32 ± 0.04 (feeding rate per visit), with repeatability estimates ranging from 0.46 ± 0.02 (duration of each meal) to 0.62 ± 0.02 (feeding rate per visit and per meal). Most of the feeding behavior measures were strongly genetically correlated, showing that with more visits or meals per day, cows spend less time in each feeder visit or meal with lower intake per visit or meal. Weekly averages for feeding behavior traits were analyzed jointly with RFI and its components. Number of meals was genetically correlated with milk energy (0.48), metabolic body weight (-0.27), and RFI (0.19). Duration of each feeder visit and meal were genetically correlated with milk energy (0.43 and 0.44, respectively). Total duration of feeder visits per day was genetically correlated with DM intake (0.29), milk energy (0.62), metabolic body weight (-0.37), and RFI (0.20). Intake per visit and meal were genetically correlated with DM intake (0.63 and 0.87), milk energy (0.47 and 0.69), metabolic body weight (0.47 and 0.68), and RFI (0.31 and 0.65). Feeding rate was genetically correlated with DM intake (0.69), metabolic body weight (0.67), RFI (0.47), and milk energy (0.21). We conclude that measures of feeding behavior could be useful indicators of dairy cow feed efficiency, and individual cows that eat at a slower rate may be more feed efficient.


Asunto(s)
Alimentación Animal , Dieta , Alimentación Animal/análisis , Animales , Peso Corporal , Bovinos/genética , Dieta/veterinaria , Ingestión de Alimentos/genética , Conducta Alimentaria , Femenino , Lactancia/genética , Leche/metabolismo
16.
Zoology (Jena) ; 154: 126030, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35905540

RESUMEN

California moray eels, Gymnothorax mordax, are benthic predatory residents of southern California kelp forest ecosystems. California morays around Catalina Island move vertically through the water column to feed, exposing them to a wide range of temperatures. For a predatory fish, morays have a relatively large prey handling repertoire that enable them to manipulate their prey before swallowing. Prey manipulation behaviors include shaking, spinning, knotting, and ramming prey against other objects. Morays also have observable transport mechanics where they protract and retract their pharyngeal jaws to swallow prey. We examined prey manipulation and transport behaviors at four temperature treatments that simulated the range of environmental temperatures morays encounter in the wild. We hypothesized that higher temperatures will increase the prevalence, duration, and rate of whole body prey manipulation behaviors and decrease the duration of prey transport time. Previous temperature studies focused on fishes occupying intermediate trophic levels. Therefore, understanding how acute temperature affects feeding behavior of the California moray eel, an abundant predatory fish, is especially important, as changes in environmental temperature may have disproportionate effects in their marine community. Five morays were acutely exposed to 15, 18, 21, 24 °C temperatures and their subsequent feeding behaviors were filmed and quantified. Individuals were offered the same relative prey mass (15 %) in relation to their body mass throughout the study. We compared the number of times each prey manipulation behavior occurred, the mean time morays employed each behavior, and the rate (number of times per second) each behavior was performed across different temperatures. Our data demonstrates that absolute time spent knotting varies significantly across temperature. Knotting, often used to remove pieces from larger prey, was most frequent at 21 and 24 °C. The average duration of knotting also increased with temperature. The rates of prey manipulation behaviors did not vary significantly with temperature. Finally, transport behavior did not vary across treatments. Our study shows that knotting behavior in the California moray is responsive to environmental temperatures and that morays may be able to manipulate larger prey in warmer waters. These behavioral data may have important implications for predator-prey relationships under dynamic and future ocean conditions.


Asunto(s)
Ecosistema , Anguilas , Animales , Peces , Maxilares , Conducta Predatoria , Temperatura
17.
Trop Life Sci Res ; 33(1): 179-199, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35651642

RESUMEN

Malaysia like many other developing countries is facing the challenge of poor waste management. This research was conducted to determine the effect of black soldier fly (BSF) larvae in decomposing food waste, palm oil waste, fish waste and yard waste. The development time and waste reduction efficiency of four different organic materials were evaluated. In this study, BSF larvae were fed with all four types of waste at five feeding rates of 0.25, 0.50, 1.00, 1.50 and 2.00 g larva-1 day-1 with three replicates per feeding rate until the larvae reached the pre-pupae stage. During the study, larval development time, larval mortality, pre-pupae weight and waste reduction indexes (WRI) were determined. Food waste and yard waste achieved the highest WRI of 4.43 ± 0.06 and 0.71 ± 0.01, respectively at the feeding rate of 0.50 g larva-1 day-1 while palm oil waste and fish waste attained the highest WRI values at feeding rates of 1.00 g larva-1 day-1 (1.89 ± 0.02) and 0.25 g larva-1 day-1 (3.75 ± 0.24), respectively. The results showed that both variables significantly influenced the bioconversion process, but waste reduction efficiency was the most influential element.


Malaysia seperti kebanyakan negara membangun yang lain menghadapi cabaran pengurusan sampah yang kurang baik. Penyelidikan ini dilakukan untuk mengetahui kesan larva lalat askar hitam dalam menguraikan sisa makanan, sisa kelapa sawit, sisa ikan dan sisa halaman. Masa perkembangan dan kecekapan pengurangan sisa empat bahan organik telah dinilai. Dalam kajian ini, larva lalat askar hitam diberi makan dengan empat jenis sisa pada lima kadar pemakanan iaitu 0.25, 0.50, 1.00, 1.50 dan 2.00 g larva−1 hari−1 dengan tiga ulangan setiap kadar pemakanan sehingga larva mencapai peringkat pra-pupa. Semasa kajian, masa perkembangan larva, kematian larva, berat badan pra-pupa dan indeks pengurangan sisa ditentukan. Sisa makanan dan sisa halaman mencapai indeks pengurangan sisa tertinggi iaitu 4.43 ± 0.06 dan 0.71 ± 0.01, masing-masing pada kadar makan 0.50 g larva−1 hari−1 sementara sisa kelapa sawit dan sisa ikan mencapai nilai indeks pengurangan sisa tertinggi pada kadar pemakanan 1.00 g larva−1 hari−1 (1.89 ± 0.02) dan 0.25 g larva−1 hari−1 (3.75 ± 0.24), masing-masing. Hasil kajian menunjukkan bahawa kedua-dua pemboleh ubah mempengaruhi proses bio-penukaran secara signifikan, tetapi kecekapan pengurangan sisa merupakan elemen yang paling berpengaruh.

18.
Zebrafish ; 19(3): 94-103, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35527676

RESUMEN

Manipulating feeding rate and protein quality may improve growth and feeding efficiency of cultured species. However, whether feeding rate, protein quality, or their interaction has a greater effect on growth and feeding efficiency response variables is unknown. To determine whether feeding rate and protein quality individually or interactively affect growth and feeding efficiency, juvenile Zebrafish (Danio rerio) were either offered nutritionally similar diet consisting of either menhaden fishmeal protein or a 100% replacement of fishmeal with soybean meal-based protein restrictively or to satiation. Total length, weight, feed intake, and feed conversion ratio (FCR) were measured throughout the duration of the study. Protein quality and feeding rate individually and interactively affected feed intake and FCR: Zebrafish offered feed to satiation had higher growth and FCR than those fed restrictively, and Zebrafish fed soybean meal-based diet showed lower growth and higher FCR and feed intake compared to those fed fishmeal-based diet, although magnitude of response depended on feeding rate. These findings likely indicate lower digestibility of soybean meal or the presence of antinutritional factors in soybean meal that led to impaired nutrient absorption of fish offered soybean meal-based diet. Differences in measured response variables between protein qualities and feeding rates highlight the importance of determining interactive effects in nutritional studies.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Pez Cebra , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Ingestión de Alimentos , Glycine max
19.
Proc Natl Acad Sci U S A ; 119(20): e2117381119, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35533278

RESUMEN

Parasitic infections are common, but how they shape ecosystem-level processes is understudied. Using a mathematical model and meta-analysis, we explored the potential for helminth parasites to trigger trophic cascades through lethal and sublethal effects imposed on herbivorous ruminant hosts after infection. First, using the model, we linked negative effects of parasitic infection on host survival, fecundity, and feeding rate to host and producer biomass. Our model, parameterized with data from a well-documented producer­caribou­helminth system, reveals that even moderate impacts of parasites on host survival, fecundity, or feeding rate can have cascading effects on ruminant host and producer biomass. Second, using meta-analysis, we investigated the links between helminth infections and traits of free-living ruminant hosts in nature. We found that helminth infections tend to exert negative but sublethal effects on ruminant hosts. Specifically, infection significantly reduces host feeding rates, body mass, and body condition but has weak and highly variable effects on survival and fecundity. Together, these findings suggest that while helminth parasites can trigger trophic cascades through multiple mechanisms, overlooked sublethal effects on nonreproductive traits likely dominate their impacts on ecosystems. In particular, by reducing ruminant herbivory, pervasive helminth infections may contribute to a greener world.


Asunto(s)
Helmintos , Parásitos , Animales , Ecosistema , Cadena Alimentaria , Herbivoria , Rumiantes , Simbiosis
20.
J Chem Ecol ; 48(4): 416-430, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35353298

RESUMEN

The consequences of defensive secondary metabolite concentrations and interspecific metabolite diversity on grazers have been extensively investigated. Grazers which prefer certain food sources are often found in high abundance on their host and as a result, understanding the interaction between the two is important to understand community structure. The effects of intraspecific diversity, however, on the grazer are not well understood. Within a single, localized geographic area, the Antarctic red seaweed Plocamium sp. produces 15 quantitatively and qualitatively distinct mixtures of halogenated monoterpenes ("chemogroups"). Plocamium sp. is strongly chemically defended which makes it unpalatable to most grazers, except for the amphipod Paradexamine fissicauda. We investigated differences in the feeding and growth rates of both Plocamium sp. and P. fissicauda, in addition to grazer reproductive output, in relation to different chemogroups. Some chemogroups significantly reduced the grazer's feeding rate compared to other chemogroups and a non-chemically defended control. The growth rate of Plocamium sp. did not differ between chemogroups and the growth rates of P. fissicauda also did not show clear patterns between the feeding treatments. Reproductive output, however, was significantly reduced for amphipods on a diet of algae possessing one of the chemogroups when compared to a non-chemically defended control. Hence, intraspecific chemodiversity benefits the producer since certain chemogroups are consumed at a slower rate and the grazer's reproductive output is reduced. Nevertheless, the benefits outweigh the costs to the grazer as it can still feed on its host and closely associates with the alga for protection from predation.


Asunto(s)
Plocamium , Animales , Regiones Antárticas , Monoterpenos/química , Plocamium/química , Conducta Predatoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA