Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.123
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124948, 2025 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-39146630

RESUMEN

Herein, a nanocomposite of Cu,Ce-containing phosphotungstates (Cu,Ce-PTs) with outstanding laccase-like activity was fabricated via a one-pot microwave-assisted hydrothermal method. Notably, it was discovered that both Fe3+ and Cr6+ could significantly enhance the electron transfer rates of Ce3+ and Ce4+, along with generous Cu2+ with high catalytic activity, thereby promoting the laccase-like activity of Cu,Ce-PTs. The proposed system can be used for the detection of Fe3+ and Cr6+ in a range of 0.667-333.33 µg/mL and 0.033-33.33 µg/mL with a low detection limit of 0.135 µg/mL and 0.0288 µg/mL, respectively. The proposed assay exhibits excellent reusability and selectivity and can be used in traditional Chinese medicine samples analysis.


Asunto(s)
Cerio , Cromo , Colorimetría , Cobre , Hierro , Lacasa , Cobre/análisis , Cobre/química , Cromo/análisis , Colorimetría/métodos , Lacasa/metabolismo , Lacasa/química , Hierro/análisis , Hierro/química , Cerio/química , Límite de Detección , Ácido Fosfotúngstico/química , Nanocompuestos/química , Catálisis
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124970, 2025 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-39153349

RESUMEN

Due to their exceptional optical properties and adjustable functional characteristics, hydrogen-bonded organic frameworks (HOFs) demonstrate significant potential in applications such as sensing, information encryption. However, studies on the synthesis of HOFs designed to construct multifunctional platforms are scant. In this work, we report the synthesis of a new fluorescent HOF by assembling melem and isophthalic acid (IPA), designated as HOF-IPA. HOF-IPA exhibited good selectivity and sensitivity towards Fe3+, making it suitable as a fluorescent sensor for Fe3+ detection. The sensor achieved satisfactory recoveries ranging from 97.79 % to106.42 % for Fe3+ sensing, with a low relative standard deviation (RSD) of less than 3.33 %, indicating significant application potential for HOF-IPA. Due to the ability of F- to mask the electrostatic action on the surface of Fe3+ and inhibit the photoelectron transfer (PET) of HOF-IPA, the HOF-IPA - Fe3+ system can be utilized as a fluorescent "off-on" sensor for F- detection. Additionally, owing to the colorless, transparent property of HOF-IPA in aqueous solution under sunlight and its blue fluorescence property under UV light (color) or microplate reader (fluorescence intensity), HOF-IPA based ink can be used for various types of information encryption, and all yielding favorable outcomes.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124993, 2025 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-39159512

RESUMEN

BODIPY-based chemosensors are widely used owing to merits like good selectivity, high fluorescence quantum yield, and excellent optical stability. As such, a pH-switchable hydrophilic fluorescent probe, BODIPY-PY-(SO3Na)2, was developed for detection of Fe3+ ion in aqueous solutions. BODIPY-PY-(SO3Na)2 revealed strong fluorescence intensity and was responsive to pH value in the range of 6.59-1.96. Additionally, BODIPY-PY-(SO3Na)2 showed good selectivity and sensitivity towards Fe3+. A good linear relationship for Fe3+ detection was obtained from 0.0 µM to 50.0 µM with low detecting limit of 6.34 nM at pH 6.59 and 2.36 nM at pH 4.32, respectively. The response to pH and detection of Fe3+ induced obvious multicolor changes. BODIPY-PY-(SO3Na)2 can also be utilized to quantitatively detect Fe3+ in real water sample. Different mechanisms of Fe3+ detection at investigated pH values were unraveled through relativistic density functional theory (DFT) calculations in BODIPY-PY-(SO3Na)2 and experiments of coexisting cations, anions and molecules. These results enabled us to gain a deeper understanding of the interactions between BODIPY-PY-(SO3Na)2 and Fe3+ and provide valuable fundamental information for design of efficient multicolor chemosensors for Fe3+ as well.

4.
Biomaterials ; 313: 122793, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39226655

RESUMEN

Numerous nanoparticles have been utilized to deliver Fe2+ for tumor ferroptosis therapy, which can be readily converted to Fe3+via Fenton reactions to generate hydroxyl radical (•OH). However, the ferroptosis therapeutic efficacy of large tumors is limited due to the slow conversion of Fe3+ to Fe2+via Fenton reactions. Herein, a strategy of intratumor Fe3+/2+ cyclic catalysis is proposed for ferroptosis therapy of large tumors, which was realized based on our newly developed hollow mesoporous iron sesquioxide nanoparticle (HMISN). Cisplatin (CDDP) and Gd-poly(acrylic acid) macrochelates (GP) were loaded into the hollow core of HMISN, whose surface was modified by laccase (LAC). Fe3+, CDDP, GP, and LAC can be gradually released from CDDP@GP@HMISN@LAC in the acidic tumor microenvironment. The intratumor O2 can be catalyzed into superoxide anion (O2•-) by LAC, and the intratumor NADPH oxidases can be activated by CDDP to generate O2•-. The O2•- can react with Fe3+ to generate Fe2+, and raise H2O2 level via the superoxide dismutase. The generated Fe2+ and H2O2 can be fast converted into Fe3+ and •OH via Fenton reactions. The cyclic catalysis of intratumor Fe3+/2+ initiated by CDDP@GP@HMISN@LAC can be used for ferroptosis therapy of large tumors.


Asunto(s)
Ferroptosis , Hierro , Ferroptosis/efectos de los fármacos , Animales , Catálisis , Humanos , Hierro/química , Línea Celular Tumoral , Nanopartículas/química , Porosidad , Ratones , Cisplatino/química , Cisplatino/uso terapéutico , Neoplasias/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Ratones Endogámicos BALB C , Peróxido de Hidrógeno/química , Microambiente Tumoral/efectos de los fármacos , Ratones Desnudos , Femenino
5.
J Environ Sci (China) ; 148: 198-209, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095157

RESUMEN

Norfloxacin is widely used owing to its strong bactericidal effect on Gram-negative bacteria. However, the residual norfloxacin in the environment can be biomagnified via food chain and may damage the human liver and delay the bone development of minors. Present work described a reliable and sensitive smartphone colorimetric sensing system based on cobalt-doped Fe3O4 magnetic nanoparticles (Co-Fe3O4 MNPs) for the visual detection of norfloxacin. Compared with Fe3O4, Co-Fe3O4 MNPs earned more remarkably peroxidase-like activity and TMB (colorless) was rapidly oxidized to oxTMB (blue) with the presence of H2O2. Interestingly, the addition of low concentration of norfloxacin can accelerate the color reaction process of TMB, and blue deepening of the solution can be observed with the naked eye. However, after adding high concentration of norfloxacin, the activity of nanozyme was inhibited, resulting in the gradual fading of the solution. Based on this principle, a colorimetric sensor integrated with smartphone RGB mode was established. The visual sensor exhibited good linearity for norfloxacin monitoring in the range of 0.13-2.51 µmol/L and 17.5-100 µmol/L. The limit of visual detection was 0.08 µmol/L. In the actual water sample analysis, the spiked recoveries of norfloxacin were over the range of 95.7%-104.7 %. These results demonstrated that the visual sensor was a convenient and fast method for the efficient and accurate detection of norfloxacin in water, which may have broad application prospect.


Asunto(s)
Cobalto , Colorimetría , Norfloxacino , Teléfono Inteligente , Contaminantes Químicos del Agua , Norfloxacino/análisis , Colorimetría/métodos , Cobalto/análisis , Cobalto/química , Contaminantes Químicos del Agua/análisis , Antibacterianos/análisis , Peroxidasa , Límite de Detección
6.
J Environ Sci (China) ; 147: 523-537, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003068

RESUMEN

Due to its high efficiency, Fe(II)-based catalytic oxidation has been one of the most popular types of technology for treating growing organic pollutants. A lot of chemical Fe sludge along with various refractory pollutants was concomitantly produced, which may cause secondary environmental problems without proper disposal. We here innovatively proposed an effective method of achieving zero Fe sludge, reusing Fe resources (Fe recovery = 100%) and advancing organics removal (final TOC removal > 70%) simultaneously, based on the in situ formation of magnetic Ca-Fe layered double hydroxide (Fe3O4@CaFe-LDH) nano-material. Cations (Ca2+ and Fe3+) concentration (≥ 30 mmol/L) and their molar ratio (Ca:Fe ≥ 1.75) were crucial to the success of the method. Extrinsic nano Fe3O4 was designed to be involved in the Fe(II)-catalytic wastewater treatment process, and was modified by oxidation intermediates/products (especially those with COO- structure), which promoted the co-precipitation of Ca2+ (originated from Ca(OH)2 added after oxidation process) and by-produced Fe3+ cations on its surface to in situ generate core-shell Fe3O4@CaFe-LDH. The oxidation products were further removed during Fe3O4@CaFe-LDH material formation via intercalation and adsorption. This method was applicable to many kinds of organic wastewater, such as bisphenol A, methyl orange, humics, and biogas slurry. The prepared magnetic and hierarchical CaFe-LDH nanocomposite material showed comparable application performance to the recently reported CaFe-LDHs. This work provides a new strategy for efficiently enhancing the efficiency and economy of Fe(II)-catalyzed oxidative wastewater treatment by producing high value-added LDHs materials.


Asunto(s)
Oxidación-Reducción , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/química , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Catálisis , Hierro/química
7.
Mycology ; 15(3): 485-505, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39247895

RESUMEN

Thermomyces dupontii harbors two P450 paralogs (P450S and P450L) in the gene cluster for the biosynthesis of prenylated indole alkaloids (PIAs) and correponding iron chelators with P450L assigned as one protein containing a CYP like domain fused with a FAD-binding domain-containing oxidoreductase. Genetic manipulation and metabolic profile analysis indicated both P450S and P450L were involved in transforming simple PIAs to their corresponding iron chelators. Moreover, P450S is responsible for bolstering simple PIAs to complex PIAs, and P450L for reinforcing conjugating unsaturated systems in complex PIAs. Chemical investigation led to isolation and characterization of novel complex PIA metabolites with more oxidations. P450L also contributed to forming the third iron-chelating core in iron chelators. A series of iron bioassays and infrastructure analysis revealed that lack of these P450 genes caused strongly elevated Fe3+ levels but attenuated Fe2+ levels, together with abnormal mitochondria in mycelia and lipid droplets and vacuoles in conidia. Phenotype analysis revealed that P450S and P450L facilitated fungal colony pigments, conidial formation and germination via bolstering conidiophores and cell walls in response to temperature reduction.

8.
Talanta ; 281: 126816, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39250869

RESUMEN

An effective and rapid Raman measurement scheme to determine Fe3O4 concentration in sintered ores was explored. Because sintered ores are brownish-black materials that easily absorb laser photons, accurate quantitative analysis requires obtaining an Fe3O4 peak with a high signal-to-ratio by reducing the possibility of local sample heating and degradation. For this purpose, a wide area coverage (WAC) Raman scheme with a laser-illumination diameter of 1 mm was adopted to decrease the laser power per area (LP/A) on each sample. The sintered ore sample was also wetted with water to reduce the chance of further heating by the laser. The combination of the WAC scheme and water-wetting allowed to increase the laser power during sample measurement, and the subsequent intensity (as well as the signal-to-noise ratio) of the Fe3O4 peak was elevated compared with both that measured by a Raman microscope yielding a higher LP/A and without water-wetting of the sample. In the Raman spectra of 93 real sintered ore samples measured using the proposed scheme, the ratio of Fe3O4 and Fe2O3 peak areas correlated closely (R2 = 0.94) with Fe3O4 concentration determined by titration. The demonstrated scheme is practical when Raman spectroscopy is employed for compositional analysis of dark and highly photon-absorbing samples.

9.
J Fluoresc ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39254816

RESUMEN

Herein, two excited-state intramolecular proton transfer (ESIPT)-capable α-cyanostilbene luminogens were synthesized by Schiff base reaction of salicylaldehyde-like α-cyanostilbene candidate with 1-naphthylamine and 3-biphenylamine, respectively. We systematically analyzed their photophysical properties compared with their analogue, and demonstrated that their fluorescence behaviors could be elaborately modulated by different aromatic substitutions tethered to H-acceptor (CH = N). In virtue of the outstanding solid fluorescence, the 3-biphenylamine-decorated fluorophore was applied for monitoring Cu2+/Fe3+ qualitatively on the TLC-based test strip in real time and sensing Cu2+/Fe3+ quantitatively in the THF/H2O medium (fw = 90%, pH = 7.4). When the probe chelated with Cu2+/Fe3+, similar "turn-off" fluorescence signal outputs were triggered. From the fluorescence titration experiments, the detection limits were evaluated as 7.97 × 10- 8 M for Cu2+ and 8.24 × 10- 8 M for Fe3+, and the binding constant (Kα) values of the complexes were found to be 7.80 × 104 M-1 for Cu2+ and 9.06 × 104 M-1 for Fe3+. Job's plots indicated that probe complexed with Cu2+/Fe3+ in a 2:1 binding stoichiometry ratio. Furthermore, the probe was used to accurately quantify the Fe3+ spiked in real water specimens. This study offered a new perspective to construct ESIPT-capable α-cyanostilbene luminogen as the potential luminescent probe.

10.
Anal Sci ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242487

RESUMEN

Arsenic (As(V)) contamination in aqueous resources poses a significant environmental, and public health risk due to its high toxicity. To address this challenge, we synthesized and characterized novel reduced graphene oxide/magnetite (rGO/Fe3O4) nanocomposites, which are efficient adsorbents for removing As(V). Using a co-precipitation method, we obtained three distinct sizes of rGO/Fe3O4 nanocomposites by controlling the salt concentration (Fe2+: Fe3+) ratios. Analysis of the adsorption ability of the samples shows that the adsorption efficiency can reach up to 98.10% within 90 min, and the adsorption capacity value reaches 20.55 mg/g. Furthermore, these test data are ably consistent with both the pseudo-second-order model and the Langmuir model, based on which the adsorption mechanism has been proposed. These results show that the rGO/Fe3O4 nanocomposites that we synthesized are a potential adsorbent for the removal of heavy metals from water.

11.
Small ; : e2403625, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39240076

RESUMEN

To search for novel anti-Alzheimer agents, multifunctional Fe3O4-based nanoparticles (FSSIO) is designed and prepared which contain ferulic acid (FA) and Simvastatin linked to the surface of Fe3O4 particles. In vitro tests confirmed that FSSIO possessed favorable biocompatibility and a pronounced ability to penetrate blood brain barrier. The FA moiety endowed the particles with remarkable antioxidant and anti-inflammatory properties, and effectively protected neuron cells from the toxicity induced by Aß. Moreover, the Simvastatin pharmacophore assists the particles up-regulate the expression level of BDNF and significantly promotes the expression levels of p-TrkB, p-ERK, p-PI3K and Akt, which consequently leads to the neurite outgrowth via regulating PI3K/ATK and TrkB-mediated signaling pathway. More importantly, in the Morris water maze test, FSSIO shows excellent activity to enhance the learning and memory retention of AD model rats.

12.
J Cell Mol Med ; 28(17): e70040, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39219020

RESUMEN

Bone tissue engineering addresses the limitations of autologous resources and the risk of allograft disease transmission in bone diseases. In this regard, engineered three-dimensional (3D) models emerge as biomimetic alternatives to natural tissues, replicating intracellular communication. Moreover, the unique properties of super-paramagnetic iron oxide nanoparticles (SPIONs) were shown to promote bone regeneration via enhanced osteogenesis and angiogenesis in bone models. This study aimed to investigate the effects of SPION on both osteogenesis and angiogenesis and characterized a co-culture of Human umbilical vein endothelial cells (HUVEC) and MG-63 cells as a model of bone microtissue. HUVECs: MG-63s with a ratio of 4:1 demonstrated the best results among other cell ratios, and 50 µg/mL of SPION was the optimum concentration for maximum survival, cell migration and mineralization. In addition, the data from gene expression illustrated that the expression of osteogenesis-related genes, including osteopontin, osteocalcin, alkaline phosphatase, and collagen-I, as well as the expression of the angiogenesis-related marker, CD-31, and the tube formation, is significantly elevated when the 50 µg/mL concentration of SPION is applied to the microtissue samples. SPION application in a designed 3D bone microtissue model involving a co-culture of osteoblast and endothelial cells resulted in increased expression of specific markers related to angiogenesis and osteogenesis. This includes the design of a novel biomimetic model to boost blood compatibility and biocompatibility of primary materials while promoting osteogenic activity in microtissue bone models. Moreover, this can improve interaction with surrounding tissues and broaden the knowledge to promote superior-performance implants, preventing device failure.


Asunto(s)
Regeneración Ósea , Técnicas de Cocultivo , Células Endoteliales de la Vena Umbilical Humana , Osteogénesis , Ingeniería de Tejidos , Humanos , Regeneración Ósea/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Ingeniería de Tejidos/métodos , Nanopartículas de Magnetita/química , Neovascularización Fisiológica/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Nanopartículas Magnéticas de Óxido de Hierro/química , Supervivencia Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Osteoblastos/metabolismo , Osteoblastos/efectos de los fármacos , Osteoblastos/citología
13.
Artículo en Inglés | MEDLINE | ID: mdl-39259831

RESUMEN

Textiles that can repeatedly change color in the presence of external stimuli have attracted great interest. Effectively designing to produce such functional textiles is essential, yet there remain challenges like producing stable coloration, rapid response, and reverse color changing. Here, the preparation of a magnetic field response (MFR) textile with a fast magnetic field response, brilliant structural coloration, and mechanical robustness is reported. The MFR textile is knitted by incorporating magnetic particles' ethylene glycol (EG) suspension within polydimethylsiloxane (PDMS)-based fibers. A surface modification strategy is designed to prevent EG from seeping out along the PDMS polymer chains. A PDMS fiber is encapsulated in waterborne polyurethane, and a polydopamine joint layer is used. The MFR textile demonstrates magnetic field-triggered structural colors, and the breaking strength and elongation at break of each composite fiber are improved. In addition, multishaped patterns can be printed on the MFR textile with the help of the photo etching technology, which enhances the applications of the new functional textiles.

14.
Materials (Basel) ; 17(17)2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39274723

RESUMEN

Constructing photonic crystals with core-shell structured nanoparticles is an important means for applications such as secure communication, anti-counterfeiting marking, and structural color camouflage. Nonetheless, the precise synthesis technology for core-shell structured nanoparticles at the hundred-nanometer scale faces significant challenges. This paper proposes a controlled synthesis method for core-shell structured nanoparticles using a template method. By using 100 nm diameter silica nanospheres as templates and coating them with a ferroferric oxide shell layer, SiO2@Fe3O4 core-shell structured nanoparticles with regular morphology and good uniformity can be obtained. The study experimentally investigated the effects of feed amount, modifiers, temperature, and feed order on the coating effect, systematically optimizing the preparation process. Centrifugal driving technology was used to achieve structural colors in the visible wavelength range. Additionally, the method successfully created well-defined and uniform core-shell structured nanoparticles using 200 nm diameter silica nanospheres as templates, demonstrating that this controllable synthesis method can effectively produce core-shell structured nanoparticles over a wide range of particle sizes. The template method proposed in this paper can significantly improve morphological regularity and size uniformity while effectively reducing the preparation cost of core-shell structured nanoparticles.

15.
Molecules ; 29(17)2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39274999

RESUMEN

Multifunctional thermal regulation materials with good thermal properties, efficient magnetic performance, and satisfactory interface bonding on fabrics are highly desirable for protective fabrics, building winter protection materials, medical thermal regulation materials, and special-environment work clothing. Herein, a new class of magnetic phase-change PW@CaCO3@Fe3O4 microcapsules was successfully produced by controlling the content of magnetic Fe3O4 through a self-assembly method. The microstructure, chemical composition, phase-change behavior, and magnetic properties of the products were sequentially characterized and analyzed. The findings revealed that the obtained microcapsules possessed regular spherical structure with uniform size and excellent thermal properties. Furthermore, PW@CaCO3 with Fe3O4 (i.e., 8% mass fraction) showed the highest thermal regulation and magnetic properties and reached an enthalpy value of 94.25 J·g-1, which is clearly superior to the value of 77.51 J·g-1 for PW@CaCO3 microcapsules. At the same time, the encapsulation efficiency of 38.7% and saturation magnetization of 2.50 emu·g-1 were the best among the four given samples. Therefore, the good paramagnetic feature had a significant synergistic effect on the thermal properties of the PW@CaCO3 microcapsules under study. More importantly, multifunctional fabrics loaded with PW@CaCO3@Fe3O4 microcapsules still showed an enthalpy value of 25.81 J·g-1 after several washes and have the potential to be used widely in the field of temperature control. The thermal regulation fabrics in this study exhibited excellent thermal properties and fastness, which contribute to their practical applications in advancing multifunctional textiles and high-technology modern fabrics.

16.
Environ Res ; 262(Pt 2): 119958, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39276839

RESUMEN

Magnetite nanoparticles (Fe3O4-NPs) have been demonstrated to be involved in direct interspecies electron transfer between syntrophic bacteria, yet a comprehensive assessment of the ability of Fe3O4-NPs to cope with process instability and volatile fatty acids (VFAs) accumulation in scaled-up anaerobic reactors is still lacking. Here, we investigated the start-up characteristics of an expanded granular sludge bed (EGSB) with Fe3O4-NPs as an adjuvant at high organic loading rate (OLR). The results showed that the methane production rate of R1 (with Fe3O4-NPs) was approximately 1.65 folds of R0 (control), and effluent COD removal efficiency was maintained at approximately 98.32% upon 20 kg COD/(m3·d) OLR. The components of volatile fatty acids are acetate and propionate, and the rapid scavenging of propionate accumulation was the difference between R1 and the control. The INT-ETS activity of R1 was consistently higher than that of R0 and R2, and the electron transfer efficiencies increased by 68.78% and 131.44%, respectively. Meanwhile, the CV curve analysis showed that the current of R1 was 40% higher than R3 (temporary addition of Fe3O4-NPs), indicating that multiple electron transfer modes might coexist. High-throughput analysis further revealed that it was difficult to reverse the progressive deterioration of system performance with increasing OLR by simply reconfiguring bacterial community structure and abundance, demonstrating that the Fe3O4-NPs-mediated DIET pathway is a prerequisite for establishing multiple electron transfer systems. This study provides a long-term and multi-scale assessment of the gaining effect of Fe3O4-NPs in anaerobic digestion scale-up devices, and provides technical support for their practical engineering applications.

17.
Ecotoxicol Environ Saf ; 285: 117057, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39278004

RESUMEN

The study investigated the performance of a novel magnetic hybrid MIL-53(Fe)/Fe3O4@TiO2 composite for removing reactive red 195 (RR195) dye from water using UVc light. Various analytical techniques were used to characterize the nanocomposite materials. X-ray diffraction analysis confirmed the presence of MIL-53(Fe) and TiO2 in the composite. FT-IR analysis identified carboxyl and Ti-O-Ti groups in the photocatalyst structure. The study evaluated the effects of pH, dye concentration, photocatalyst dosage, and temperature on RR195 photodegradation. The Langmuir-Hinshelwood kinetic model provided the best fit for the reaction rate. Optimal conditions for an 84 % dye degradation were found at a photocatalyst dose of 15 mg/100 mL, pH 3, dye concentration of 100 mg/L, and 35 °C after 120 minutes of UVc light exposure. Thermodynamic analysis indicated an endothermic reaction with positive values for Δ#H and negative values for Δ#S. The MIL-53(Fe)/Fe3O4@TiO2 composite demonstrated excellent stability and achieved over 90 % dye degradation after five cycles. Overall, the composite shows promise for treating wastewater with dyes.

18.
Sci Rep ; 14(1): 21488, 2024 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-39277597

RESUMEN

Graphite carbon nitride (g-C3N4) is a two-dimensional nano-sheet with electronic properties, which shows unique characteristics with high chemical and thermal stability in its structure. The functionalization of these compounds through covalent bonding is an important step towards significantly improving their properties and capabilities. To achieve this goal, a novel strategy for the covalent functionalization of Fe3O4@g-C3N4 with thiamine hydrochloride (vitamin B1) via cyanuric chloride (TCT), which is a divalent covalent linker, was presented. The efficiency of Fe3O4@gC3N4@Thiamine as a heterogeneous organic catalyst in the synthesis of spirooxindole-pyran derivatives and 2-amino-4H-pyran under solvent-free conditions was evaluated and the yields of high-purity products were presented. In addition, easy recycling and reuse for seven consecutive cycles without significant reduction in catalytic activity are other features of this catalyst. Moreover, the performance of the prepared sorbent in the microextraction technique (herein, magnetic solid phase extraction) was studied. The tebuconazole was selected as the target analyte. The target analyte was extracted and determined by HPLC-UV. Under the optimum condition, the linear range of the method (LDR) was estimated in the range of 0.2-100 µg L-1 (the coefficient of determination of 0.9962 for tebuconazole). The detection limit (LOD) of the method for tebuconazole was calculated to be 0.05 µg L-1. The limit of quantification (LOQ) of the method was also estimated to be 0.16 µg L-1. In order to check the precision of the proposed method, the intra-day and inter-day relative standard deviations (RSD%) were calculated, which were in the range of 1.5- 2.8%. The method was used for the successful extraction and determination of tebuconazole in tomato, cucumber, and carrot samples.


Asunto(s)
Grafito , Tiamina , Triazoles , Catálisis , Triazoles/química , Triazoles/análisis , Grafito/química , Tiamina/química , Tiamina/análisis , Contaminación de Alimentos/análisis , Análisis de los Alimentos/métodos , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos/síntesis química , Compuestos de Nitrógeno/química , Microextracción en Fase Sólida/métodos , Compuestos Inorgánicos de Carbono/química
19.
J Environ Manage ; 369: 122354, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39226814

RESUMEN

The effect of Fe3O4 nanoparticles (Fe3O4 NPs) on the electron transfer process in aerobic composting systems remains unexplored. In this study, we compared the electron transfer characteristics of DOM in sludge composting without additives (group CK) and with the addition of 50 mg/kg Fe3O4 NPs additive (group Fe). It was demonstrated that the electron transfer capacity (ETC) and electron donating capacity (EDC) of compost-derived DOM increased by 13%-29% and 40%-47%, respectively, with the addition of Fe3O4 NPs during sludge composting. Analyzing the composition and structure of DOM revealed that Fe3O4 NPs promoted the formation of humic acid-like substances and enhanced the aromatic condensation degree of DOM. Correlation analysis indicated that the increase in EDC of DOM was closely associated with the phenolic group in DOM and influenced by quinone groups and the degree of aromatization of DOM. The higher EDC and the structural evolution of DOM in group Fe reduced the bioaccessibility of Cu, Cr, Ni, Zn. This study contributes to a deeper understanding of the redox evolutionary mechanism of DOM in sludge composting and broadens the application of iron oxides additives.


Asunto(s)
Compostaje , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Sustancias Húmicas/análisis , Electrones , Compuestos Férricos/química
20.
Sci Rep ; 14(1): 21287, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39266615

RESUMEN

In the present work, the un-doped, M-doped magnetite (Fe3O4); (M = Mn, Zn), and MS/Fe3O4 composite nanopowders with a cubic spinel-type structure and average crystallite size range from 8.30 to 12.33 nm were synthesized by co-precipitation method. The FESEM images revealed the shape of particles are spherical with a grain size in the range of 33.44-49.77 nm. Through the analysis of reflectance data using Tauc's model, the direct band gap energies of 2.98 eV, 2.93 eV, 3.01 eV, 2.85 eV, and 2.95 eV were determined for Un-doped Fe3O4, Mn-doped Fe3O4, Zn-doped Fe3O4, MnS/Fe3O4 composite, and ZnS/Fe3O4 composite NPs respectively. The parameters such as extinction coefficient and refractive index of the nanoparticles were computed by the Kramers-Kronig (K-K) method. Non-linear optical (NLO) parameters were computed from DRS data using the Wemple-Di-Domenico (WDD) model. The calculated third-order NLO susceptibility χ ( 3 ) and also electrical susceptibility χ e represented the maximum value for MnS/Fe3O4 composite NPs compared to the other samples. Considering the advanced optical parameters of MS/Fe3O4 composite samples, these particles can be suitable candidates for non-linear optical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA