Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 350: 124014, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38642792

RESUMEN

Biochar has been used for soil Cr(VI) remediation in the last decade due to its enriched redox functional groups and good electrochemical properties. However, the role of soil inherent Fe-bearing minerals during the reduction of Cr(VI) has been largely overlooked. In this study, biochar with different electron-donating capacities (EDCs) was produced at 400 °C (BC400) and 700 °C (BC700), and their performance for Cr(VI) reduction in soils with varied properties (e.g., Fe content) was investigated. The addition of BC400 caused around 14.2-36.0 mg g-1 Cr(VI) reduction after two weeks of incubation in red soil, paddy soil, loess soil, and fluvo-aquic soil, while a less Cr(VI) was reduced by BC700 (2.57-16.7 mg g-1) with smaller EDCs. The Cr(VI) reduction by both biochars in different soils was closely related to Fe content (R2 = 0.93-0.98), so red soil with the richest Fe (14.8% > 1.79-3.49%) showed the best reduction capability, and the removal of soil free Fe oxides (e.g., hematite) resulted in 71.9% decrease of Cr(VI) reduction by BC400. On one hand, Fe-bearing minerals could increase the soil acidity, neutralize the surface negative charge of biochar, enhance the contact between Cr(VI) and biochar, and thus facilitate the direct Cr(VI) reduction by biochar in soils. On the other hand, Fe-bearing minerals could also facilitate the indirect Cr(VI) reduction by mediating the electron from biochar to Cr(VI) with the cyclic transformation of Fe(II)/Fe(III). This study demonstrates the key role of soil Fe-bearing minerals in Cr(VI) reduction by biochar, which advances our understanding on the biochar-based remediation mechanism of Cr(VI)-contaminated soils.


Asunto(s)
Carbón Orgánico , Cromo , Restauración y Remediación Ambiental , Hierro , Minerales , Oxidación-Reducción , Contaminantes del Suelo , Suelo , Carbón Orgánico/química , Cromo/química , Contaminantes del Suelo/química , Suelo/química , Minerales/química , Hierro/química , Restauración y Remediación Ambiental/métodos , Electrones
2.
Environ Pollut ; 344: 123353, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38219894

RESUMEN

In contaminated soil sites, the coexistence of inorganic and organic contaminants poses a significant threat to both the surrounding ecosystem and public health. However, the migration characteristics of these co-contaminants within the soil and their interactions with key components, including Fe-bearing minerals, organic matter, and microorganisms, remain unclear. This study involved the collection of a 4.3-m-depth co-contaminated soil profile to investigate the vertical distribution patterns of co-contaminants (namely, arsenic, cadmium, and polychlorinated biphenyls (PCBs)) and their binding mechanisms with environmental factors. The results indicated a notable downward accumulation of inorganic contaminants with increasing soil depth, whereas PCBs were predominantly concentrated in the uppermost layer. Chemical extraction and synchrotron radiation analysis highlighted a positive correlation between the abundance of reactive iron (FeCBD) and both co-contaminants and microbial communities in the contaminated site. Furthermore, Mantel tests and structural equation modeling (SEM) demonstrated the direct impacts of FeCBD and microbial communities on co-contaminants within the soil profile. Overall, these results provided valuable insights into the migration and transformation characteristics of co-contaminants and their binding mechanisms mediated by minerals, organic matter, and microorganisms.


Asunto(s)
Microbiota , Bifenilos Policlorados , Contaminantes del Suelo , Hierro/química , Suelo/química , Bifenilos Policlorados/análisis , Contaminantes del Suelo/análisis , Minerales/química
3.
Sci Total Environ ; 820: 153253, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35065114

RESUMEN

The microbe-clay mineral system is widely known to reduce the fluidity of heavy metals through biomineralization, thus mitigating soil pollution stemming from heavy metals. Here, we investigated the effect of mineral distinction on the solidification of cadmium (Cd) using sulfate-reducing bacteria (SRB) to construct symbiotic systems with purplish soil, clay-sized fraction of purple soil (Clay-csp), clay particles of amorphous iron (Fe) oxide (Clay-ox), clay particles removing crystalline Fe oxide (Clay-CBD), and residues of Clay-CBD treated by hydrochloric acid (Clay-HCl). The difference in Cd morphology among purplish soil, Clay-csp, and Clay-ox indicated that the fixation of Cd in soil was largely determined by Fe oxides. The content of Cd in Clay-csp decreased by 66.7% after the removal of amorphous Fe, confirming that clay easily adsorbed infinitive Fe oxides in purple soil. In the system of SRB and Clay-ox, carbonate-bound Cd (F2) decreased by 14.85% and residual Cd (F5) increased by 14% from the retardation to late decline phase, eventually forming iron-sulfur (Fe-S) compounds. Based on the correlation analyses of Cd and Fe in amorphous-bound state and Fe-manganese (Mn) oxidation state in simulation experiments, it is demonstrated that Fe-Mn oxides control the behavior of Cd in soil clay, and SRB-mediated Fe-bearing minerals promote the transformation of Cd from activated to stable state.


Asunto(s)
Desulfovibrio , Contaminantes del Suelo , Cadmio/análisis , Arcilla , Hierro , Minerales/química , Suelo , Contaminantes del Suelo/análisis , Sulfatos
4.
Environ Pollut ; 267: 115616, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33254624

RESUMEN

Paddy soils around mining areas suffer from the great threat of heavy metal pollution. The traditional source-tracing methods based on metal concentrations limit our ability to quantify the sources of heavy metals and trace their transport processes to paddy soils. In this study, Zn isotope compositions of paddy soils in Dabaoshan mine area, a typical sulfide deposit in southern China, have been systematically studied. According to a plot between 1/Zn (i.e. inverse concentration) and δ66Zn value, all the polluted paddy soils fall on the mixing line between acid mine drainage precipitate (AMD-precipitate) and fertilizer while the unpolluted paddy soil falls on the mixing line between fertilizer and bedrock. This indicates the mixing of Zn sources at least three end-members: the mining end-member (i.e. AMD-precipitate), the agricultural end-member (i.e. fertilizer), and bedrock whose geochemical signature is often overprinted by the former two sources around the mining area. The quantitative calculations to apportion the end-member's contributions show that the mining activity contributes most Zn in the paddy soils with an average of ∼66.2%. The contribution of mining activities has significant spatial variations. Specifically, the mining activities have relatively low impacts on the lower reach and the deep soil. Additionally, the apparent Zn isotope fractionation between AMD and AMD-precipitate (Δ66ZnAMD-precipitate - AMD of -0.35 to -0.08‰) in the tailings dam suggests that Zn cations in AMD coprecipitated with the secondary Fe-bearing minerals (e.g. jarosite and goethite). After being discharged from the tailings dam, Zn is mainly carried by the Fe-oxide minerals and migrated during surface runoff. Our study highlights the contribution of human activities to the Zn pollution in the paddy soils and the key role of Fe-bearing minerals in the migration of Zn. These findings provide a scientific base for the development of policy for pollution control in mining-affected region.


Asunto(s)
Isótopos , Suelo , China , Fertilizantes , Humanos , Zinc
5.
Chemosphere ; 220: 335-343, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30590299

RESUMEN

Although the heterogeneous Fenton process of iron-bearing minerals has been widely studied due to its potential use for the removal of organic pollutants, the transformation mediated by Fe species in soil particles remains poorly understood. Here, we compared the removal of bisphenol A (BPA) from soil using a Fenton system at low and high pH values. At low pH value, the BPA removal rate decreased with increasing pH value; this result was consistent with the amount of soluble Fe(II) and surface-bound Fe(II) observed in the soil systems. In contrast, an increased BPA degradation efficiency was observed at high pH, which is different from the traditional Fenton system. The electron spin resonance analysis verified that the high BPA degradation rate was attributed to enhanced ·OH generation. The binding environments of the Fe species in the soil for different reaction pH values were investigated by using Mössbauer spectroscopy combined with selective chemical extraction. A mixed-valence Fe(II) phase was observed at pH 12.0 and accounted for 12% of the total Fe content. The results indicate that in addition to the well-studied soluble Fe(II) and surface-bound Fe(II), structural Fe(II) located in the newly formed secondary precipitates may play a more important role in the generation of ·OH, especially at high pH values. These findings may provide insights into the utilization of Fe-bearing soil minerals as a renewable source for the degradation of organic pollutants over a wide pH range.


Asunto(s)
Compuestos de Bencidrilo/metabolismo , Depuradores de Radicales Libres/metabolismo , Peróxido de Hidrógeno/química , Hierro/química , Fenoles/metabolismo , Contaminantes del Suelo/metabolismo , Suelo/química , Concentración de Iones de Hidrógeno , Oxidación-Reducción
6.
Environ Sci Pollut Res Int ; 24(2): 1630-1647, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27796971

RESUMEN

The Amarillo River (Famatina range, Argentina, ~29° S and ~67° W) is unusual because acid mine drainage (AMD) is superimposed on the previously existing acid rock drainage (ARD) scenario, as a Holocene paleolake sedimentary sequence shows. In a markedly oxidizing environment, its water is currently ferrous and of the sulfate-magnesium type with high electrical conductivity (>10 mS cm-1 in uppermost catchments). At the time of sampling, the interaction of the mineralized zone with the remnants of mining labors determined an increase in some elements (e.g., Cu ~3 to ~45 mg L-1; As ~0.2 to ~0.5 mg L-1). Dissolved concentrations were controlled by pH, decreasing significantly by precipitation of neoformed minerals (jarosite and schwertmannite) and subsequent metal sorption (~700 mg kg-1 As, 320 mg kg-1 Zn). Dilution also played a significant role (i.e., by the mixing with circumneutral waters which reduces the dissolved concentration and also enhances mineral precipitation). Downstream, most metals exhibited a significant attenuation (As 100 %, Fe 100 %, Zn 99 %). PHREEQC-calculated saturation indices (SI) indicated that Fe-bearing minerals, especially schwertmannite, were supersaturated throughout the basin. All positive SI increased through the input of circumneutral water. PHREEQC inverse geochemical models showed throughout the upper and middle basin, that about 1.5 mmol L-1 of Fe-bearing minerals were precipitated. The modeling exercise of mixing different waters yielded results with a >99 % of correlation between observed and modeled data.


Asunto(s)
Minería , Ríos/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Argentina , Monitoreo del Ambiente , Compuestos Férricos/análisis , Compuestos Férricos/química , Concentración de Iones de Hidrógeno , Compuestos de Hierro/análisis , Compuestos de Hierro/química , Metales Pesados/análisis , Metales Pesados/química , Minerales/análisis , Minerales/química , Sulfatos/análisis , Sulfatos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA