Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
1.
Heliyon ; 10(15): e35467, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39165987

RESUMEN

Background: Lipid accumulation and redox imbalance, resulting from dysregulation of hepatic fatty acids oxidation, contribute to the development of steatohepatitis and insulin resistance. Recently, dysregulated RNA N6-methyladenosine (m6A) methylation modification has been found involving fatty liver. However, the role of methyltransferase-like 14 (METTL14), the core component of m6A methylation, in the development of steatohepatitis is unknown. Herein, we aimed to explore the role of METTL14 on steatohepatitis and insulin resistance in mice with metabolic dysfunction-associated steatotic liver disease (MASLD). Methods: The liver tissues of mice and patients with MASLD were collected to detect the expression of METTL14. METTL14 overexpression and METTL14 silence were used to investigate the effect of METTL14 on lipid metabolism disorder in vivo and in vitro. Knockout of METTL14 in primary hepatocytes was used to investigate the role of Sirtuin 1 (SIRT1) on lipid accumulation induced by METTL14. Results: METTL14 was dramatically up-regulated in the livers of db/db mice, high-fat diet (HFD)-fed mice, and patients with MASLD. METTL14 overexpression exacerbated MASLD and promoted lipid metabolism disorder and insulin resistance in mice. Conversely, METTL14 knockout ameliorated lipid deposition and insulin resistance in HFD-fed mice. Furthermore, METTL14 overexpression facilitated lipid accumulation, while METTL14 knockout reduced lipid accumulation in HepG2 cells and primary hepatocytes. In addition, METTL14 lost up-regulated SIRT1 expression in hepatocytes. SIRT1 deficiency abrogated the ameliorating effects of METTL14 downregulation in MASLD mice. Conclusions: These findings suggest that dysfunction of the METTL14-SIRT1 pathway might promote hepatic steatosis and insulin resistance.

2.
Int Immunopharmacol ; 141: 112917, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39137630

RESUMEN

PURPOSE: This study aimed to explore novel targets for hepatocellular carcinoma (HCC) treatment by investigating the role of fatty acid metabolism. METHODS: RNA-seq and clinical data of HCC were obtained from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Bioinformatic analyses were employed to identify differentially expressed genes (DEGs) related to prognosis. A signature was then constructed using the Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression to classify HCC patients from the TCGA database into low-risk and high-risk groups. The predictive performance of the signature was evaluated through principal components analysis (PCA), Kaplan Meier (KM) survival analysis, receiver operating characteristics (ROC) curves, nomogram, genetic mutations, drug sensitivity analysis, immunological correlation analysis, and enrichment analysis. Single-cell maps were constructed to illustrate the distribution of core genes. Immunohistochemistry (IHC), quantitative real-time PCR (qRT-PCR), and western blot were employed to verify the expression of core genes. The function of one core gene was validated through a series of in vitro assays, including cell viability, colony formation, wound healing, trans-well migration, and invasion assays. The results were analyzed in the context of relevant signaling pathways. RESULTS: Bioinformatic analyses identified 15 FAMGs that were related to prognosis. A 4-gene signature was constructed, and patients were divided into high- and low-risk groups according to the signature. The high-risk group exhibited a poorer prognosis compared to the low-risk group in both the training (P < 0.001) and validation (P = 0.020) sets. Furthermore, the risk score was identified as an independent predictor of OS (P < 0.001, HR = 8.005). The incorporation of the risk score and clinicopathologic features into a nomogram enabled the effective prediction of patient prognosis. The model was able to effectively predict the immune microenvironment, drug sensitivity to chemotherapy, and gene mutation for each group. Single-cell maps demonstrated that FAMGs in the model were distributed in tumor cells. Enrichment analyses revealed that the cell cycle, fatty acid ß oxidation and PPAR signaling pathways were the most significant pathways. Among the four key prognostically related FAMGs, Spermine Synthase (SMS) was selected and validated as a potential oncogene affecting cell cycle, PPAR-γ signaling pathway and fatty acid ß oxidation in HCC. CONCLUSIONS: The risk characteristics based on FAMGs could serve as independent prognostic indicators for predicting HCC prognosis and could also serve as evaluation criteria for gene mutations, immunity, and chemotherapy drug therapy in HCC patients. Meanwhile, targeted fatty acid metabolism could be used to treat HCC through related signaling pathways.


Asunto(s)
Carcinoma Hepatocelular , Ácidos Grasos , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas , PPAR gamma , Transducción de Señal , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/mortalidad , Ácidos Grasos/metabolismo , PPAR gamma/metabolismo , PPAR gamma/genética , Oxidación-Reducción , Línea Celular Tumoral , Progresión de la Enfermedad , Pronóstico , Masculino , Femenino , Persona de Mediana Edad
3.
Biol Pharm Bull ; 47(8): 1429-1436, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39135238

RESUMEN

Farnesoid X receptor (FXR) is a nuclear receptor that regulates the synthesis and enterohepatic circulation of bile acids (BAs). It also regulates lipid and carbohydrate metabolism, making FXR ligands potential therapeutic agents for systemic and/or hepatic metabolic disorders. We previously synthesized a series of FXR antagonists and showed that oral administration of FLG249 reduced the expression of several FXR target genes in the mouse ileum. Here, we investigated the effects of FLG249 on lipid metabolism in mice fed a high-fat diet (HFD). When FLG249 was administered for 4 weeks to HFD-induced obese mice, it altered the expression of genes related to BA metabolism, ceramide synthesis and fatty acid ß-oxidation, improving lipid metabolism in the liver and ileum without decreasing body weight. These findings suggest that FLG249 has the potential to be a low toxicity pharmaceutical compound and likely acts as a nonsteroidal FXR antagonist to improve lipid metabolism disorders.


Asunto(s)
Colesterol , Dieta Alta en Grasa , Hígado , Ratones Endogámicos C57BL , Obesidad , Receptores Citoplasmáticos y Nucleares , Triglicéridos , Animales , Dieta Alta en Grasa/efectos adversos , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Receptores Citoplasmáticos y Nucleares/metabolismo , Masculino , Hígado/metabolismo , Hígado/efectos de los fármacos , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Obesidad/sangre , Colesterol/sangre , Triglicéridos/sangre , Metabolismo de los Lípidos/efectos de los fármacos , Ácidos y Sales Biliares/metabolismo , Ratones , Ratones Obesos , Íleon/metabolismo , Íleon/efectos de los fármacos
4.
Fish Shellfish Immunol ; 153: 109829, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39142373

RESUMEN

As a vital pathway for cellular energy production, mitochondrial fatty acid ß-oxidation (FAO) is essential in regulating immune responses to bacterial pathogens and maintaining intracellular homeostasis in vertebrates. However, the specific role of FAO in antiviral innate immune response in macrophages remains insufficiently understood. In this study, virus infection simulated by poly(I:C) inhibited FAO, as indicated by the reduced expression of FAO-related genes and proteins in the head kidney of large yellow croaker, with similar results observed in poly(I:C)-stimulated macrophages. Then, inhibition of FAO by supplementary mildronate in vivo and etomoxir treatment in vitro revealed varying increases in the mRNA expression of antiviral innate immune response genes after stimulated by poly(I:C) in the head kidney and macrophages. Notably, etomoxir significantly facilitated the transcriptional up-regulation of the IFNh promoter by IRF3. Moreover, inhibiting FAO by knockdown of cpt1b promoted antiviral innate immune response triggered by poly(I:C) in macrophages. Conversely, activating FAO through overexpression of cpt1b or cpt2 significantly reduced the mRNA levels of antiviral response genes in macrophages stimulated by poly(I:C). Unlike etomoxir, cpt1b overexpression inhibited the transcriptional up-regulation of the IFNh promoter by IRF3. Furthermore, in vivo dietary palm oil feeding and in vitro exposure to palmitic acid inhibited the antiviral innate immune response triggered by poly(I:C) in the head kidney and macrophages, respectively. These effects were partly associated with FAO activation, as evidenced by etomoxir. In summary, this study elucidates FAO's critical role in regulating antiviral innate immune response in head kidney macrophages. These findings not only deepen insights into the interaction between metabolic remodeling and host immune responses, but also offer valuable guidance for developing nutritional strategies to improve antiviral immunity in aquaculture.


Asunto(s)
Ácidos Grasos , Enfermedades de los Peces , Riñón Cefálico , Inmunidad Innata , Macrófagos , Perciformes , Poli I-C , Animales , Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/genética , Perciformes/inmunología , Riñón Cefálico/inmunología , Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Enfermedades de los Peces/inmunología , Poli I-C/farmacología , Mitocondrias , Oxidación-Reducción , Proteínas de Peces/genética , Proteínas de Peces/inmunología
5.
Int J Mol Sci ; 25(16)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39201781

RESUMEN

Carnitine-acylcarnitine translocase (CACT) is a nuclear-encoded mitochondrial carrier that catalyzes the transfer of long-chain fatty acids across the inner mitochondrial membrane for ß-oxidation. In this study, we conducted a structural and functional characterization of the CACT promoter to investigate the molecular mechanism underlying the transcriptional regulation of the CACT gene by n-3 PUFA, EPA and DHA. In hepatic BRL3A cells, EPA and DHA stimulate CACT mRNA and protein expression. Deletion promoter analysis using a luciferase reporter gene assay identified a n-3 PUFA response region extending from -202 to -29 bp. This region did not contain a response element for PPARα, a well-known PUFA-responsive nuclear receptor. Instead, bioinformatic analysis revealed two highly conserved GABP responsive elements within this region. Overexpression of GABPα and GABPß subunits, but not PPARα, increased CACT promoter activity, more remarkably upon treatment with EPA and DHA. ChIP assays showed that n3-PUFA enhanced the binding of GABPα to the -202/-29 bp sequence. Furthermore, both EPA and DHA induced nuclear accumulation of GABPα. In conclusion, our findings indicate that the upregulation of CACT by n3-PUFA in hepatic cells is independent from PPARα and could be mediated by GABP activation.


Asunto(s)
Carnitina Aciltransferasas , Ácidos Docosahexaenoicos , Ácido Eicosapentaenoico , Factor de Transcripción de la Proteína de Unión a GA , Factor 2 Relacionado con NF-E2 , Regiones Promotoras Genéticas , Ácido Eicosapentaenoico/farmacología , Ácidos Docosahexaenoicos/farmacología , Factor de Transcripción de la Proteína de Unión a GA/metabolismo , Factor de Transcripción de la Proteína de Unión a GA/genética , Animales , Carnitina Aciltransferasas/metabolismo , Carnitina Aciltransferasas/genética , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Ratas , Línea Celular , Humanos , PPAR alfa/metabolismo , PPAR alfa/genética , Regulación de la Expresión Génica/efectos de los fármacos
6.
Acta Crystallogr D Struct Biol ; 80(Pt 8): 605-619, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39012716

RESUMEN

The Mycobacterium tuberculosis trifunctional enzyme (MtTFE) is an α2ß2 tetrameric enzyme in which the α-chain harbors the 2E-enoyl-CoA hydratase (ECH) and 3S-hydroxyacyl-CoA dehydrogenase (HAD) active sites, and the ß-chain provides the 3-ketoacyl-CoA thiolase (KAT) active site. Linear, medium-chain and long-chain 2E-enoyl-CoA molecules are the preferred substrates of MtTFE. Previous crystallographic binding and modeling studies identified binding sites for the acyl-CoA substrates at the three active sites, as well as the NAD binding pocket at the HAD active site. These studies also identified three additional CoA binding sites on the surface of MtTFE that are different from the active sites. It has been proposed that one of these additional sites could be of functional relevance for the substrate channeling (by surface crawling) of reaction intermediates between the three active sites. Here, 226 fragments were screened in a crystallographic fragment-binding study of MtTFE crystals, resulting in the structures of 16 MtTFE-fragment complexes. Analysis of the 121 fragment-binding events shows that the ECH active site is the `binding hotspot' for the tested fragments, with 41 binding events. The mode of binding of the fragments bound at the active sites provides additional insight into how the long-chain acyl moiety of the substrates can be accommodated at their proposed binding pockets. In addition, the 20 fragment-binding events between the active sites identify potential transient binding sites of reaction intermediates relevant to the possible channeling of substrates between these active sites. These results provide a basis for further studies to understand the functional relevance of the latter binding sites and to identify substrates for which channeling is crucial.


Asunto(s)
Acilcoenzima A , Proteínas Bacterianas , Dominio Catalítico , Mycobacterium tuberculosis , Mycobacterium tuberculosis/enzimología , Cristalografía por Rayos X , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Acilcoenzima A/metabolismo , Acilcoenzima A/química , Especificidad por Sustrato , Sitios de Unión , Modelos Moleculares , Enoil-CoA Hidratasa/metabolismo , Enoil-CoA Hidratasa/química , Unión Proteica , 3-Hidroxiacil-CoA Deshidrogenasas/química , 3-Hidroxiacil-CoA Deshidrogenasas/metabolismo
7.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167442, 2024 10.
Artículo en Inglés | MEDLINE | ID: mdl-39059593

RESUMEN

Unlike humans and other mammals, zebrafish demonstrate a remarkable capacity to regenerate their injured hearts throughout life. Mitochondrial fatty acid ß-oxidation (FAO) contributes to major energy demands of the adult hearts under physiological conditions; however, its functions in regulating cardiac regeneration and the underlying mechanisms are not completely understood. Different strategies targeting FAO have yield mixed outcomes. Here, we demonstrated that pharmacological inhibition of mitochondrial FAO with mildronate (MD) caused lipid accumulation in zebrafish larvae and suppressed ventricle regeneration. MD treatment impeded cardiogenic factor reactivation and cardiomyocyte (CM) proliferation, and impaired ventricle regeneration could be rescued by exogenous l-carnitine supplementation. Moreover, compared with the ablated hearts of wild-type fish, ventricle regeneration, cardiogenic factor reactivation and CM proliferation were significantly blocked in the ablated hearts of carnitine palmitoyltransferase-1b (cpt1b) knockout zebrafish. Further experiments suggested that NF-κB signaling and increased inflammation may be involved in the impediment of ventricle regeneration caused by systemic mitochondrial FAO inhibition. Overall, our study demonstrates the essential roles of mitochondrial FAO in zebrafish ventricle regeneration and reaffirms the sophisticated and multifaceted roles of FAO in heart regeneration with regard to different injury models and means of FAO inhibition.


Asunto(s)
Ácidos Grasos , Ventrículos Cardíacos , Oxidación-Reducción , Regeneración , Pez Cebra , Animales , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Proliferación Celular/efectos de los fármacos , Ácidos Grasos/metabolismo , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/efectos de los fármacos , Metilhidrazinas/farmacología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , FN-kappa B/metabolismo , Oxidación-Reducción/efectos de los fármacos , Regeneración/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
8.
Int J Biochem Cell Biol ; 172: 106585, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38734232

RESUMEN

Tamoxifen is an estrogen receptor modulator that has been reported to alleviate hepatic lipid accumulation in mice, but the mechanism is still unclear. Peroxisome fatty acid ß-oxidation is the main metabolic pathway for the overload of long-chain fatty acids. As long-chain fatty acids are a cause of hepatic lipid accumulation, the activation of peroxisome fatty acid ß-oxidation might be a novel therapeutic strategy for metabolic associated fatty liver disease. In this study, we investigated the mechanism of tamoxifen against hepatic lipid accumulation based on the activation of peroxisome fatty acid ß-oxidation. Tamoxifen reduced liver long-chain fatty acids and relieved hepatic lipid accumulation in high fat diet mice without sex difference. In vitro, tamoxifen protected primary hepatocytes against palmitic acid-induced lipotoxicity. Mechanistically, the RNA-sequence of hepatocytes isolated from the liver revealed that peroxisome fatty acid ß-oxidation was activated by tamoxifen. Protein and mRNA expression of enoyl CoA hydratase and 3-hydroxyacyl CoA hydratase were significantly increased in vivo and in vitro. Small interfering RNA enoyl CoA hydratase and 3-hydroxyacyl CoA hydratase in primary hepatocytes abolished the therapeutic effects of tamoxifen in lipid accumulation. In conclusion, our results indicated that tamoxifen could relieve hepatic lipid accumulation in high fat diet mice based on the activation of enoyl CoA hydratase and 3-hydroxyacyl CoA hydratase-mediated peroxisome fatty acids ß-oxidation.


Asunto(s)
Enoil-CoA Hidratasa , Hepatocitos , Metabolismo de los Lípidos , Hígado , Ratones Endogámicos C57BL , Oxidación-Reducción , Peroxisomas , Tamoxifeno , Animales , Tamoxifeno/farmacología , Ratones , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Hígado/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Masculino , Peroxisomas/metabolismo , Peroxisomas/efectos de los fármacos , Enoil-CoA Hidratasa/metabolismo , Enoil-CoA Hidratasa/genética , Regulación hacia Arriba/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Femenino , Ácidos Grasos/metabolismo
9.
Mol Metab ; 84: 101953, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38710444

RESUMEN

OBJECTIVE: Lipid metabolism plays an important role in early pregnancy, but its effects on decidualization are poorly understood. Fatty acids (FAs) must be esterified by fatty acyl-CoA synthetases to form biologically active acyl-CoA in order to enter the anabolic and/or catabolic pathway. Long-chain acyl-CoA synthetase 4 (ACSL4) is associated with female reproduction. However, whether it is involved in decidualization is unknown. METHODS: The expression of ACSL4 in human and mouse endometrium was detected by immunohistochemistry. ACSL4 levels were regulated by the overexpression of ACSL4 plasmid or ACSL4 siRNA, and the effects of ACSL4 on decidualization markers and morphology of endometrial stromal cells (ESCs) were clarified. A pregnant mouse model was established to determine the effect of ACSL4 on the implantation efficiency of mouse embryos. Modulation of ACSL4 detects lipid anabolism and catabolism. RESULTS: Through examining the expression level of ACSL4 in human endometrial tissues during proliferative and secretory phases, we found that ACSL4 was highly expressed during the secretory phase. Knockdown of ACSL4 suppressed decidualization and inhibited the mesenchymal-to-epithelial transition induced by MPA and db-cAMP in ESCs. Further, the knockdown of ACSL4 reduced the efficiency of embryo implantation in pregnant mice. Downregulation of ACSL4 inhibited FA ß-oxidation and lipid droplet accumulation during decidualization. Interestingly, pharmacological and genetic inhibition of lipid droplet synthesis did not affect FA ß-oxidation and decidualization, while the pharmacological and genetic inhibition of FA ß-oxidation increased lipid droplet accumulation and inhibited decidualization. In addition, inhibition of ß-oxidation was found to attenuate the promotion of decidualization by the upregulation of ACSL4. The decidualization damage caused by ACSL4 knockdown could be reversed by activating ß-oxidation. CONCLUSIONS: Our findings suggest that ACSL4 promotes endometrial decidualization by activating the ß-oxidation pathway. This study provides interesting insights into our understanding of the mechanisms regulating lipid metabolism during decidualization.


Asunto(s)
Coenzima A Ligasas , Endometrio , Ácidos Grasos , Gotas Lipídicas , Oxidación-Reducción , Femenino , Coenzima A Ligasas/metabolismo , Coenzima A Ligasas/genética , Animales , Ratones , Humanos , Endometrio/metabolismo , Ácidos Grasos/metabolismo , Embarazo , Gotas Lipídicas/metabolismo , Decidua/metabolismo , Adulto , Metabolismo de los Lípidos , Implantación del Embrión , Células del Estroma/metabolismo
10.
Brain Inj ; 38(10): 835-847, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-38716911

RESUMEN

BACKGROUND: Hyperlipidemia is a risk factor for stroke, and worsens neurological outcome after stroke. Endothelial progenitor cells (EPCs), which become dysfunctional in cerebral ischemia, hold capacity to promote revascularization. OBJECTIVE: We investigated the role of dyslipidemia in impairment of EPC-mediated angiogenesis in cerebral ischemic mice. METHODS AND RESULTS: The high fat diet (HFD)-fed mice following by ischemic stroke exhibited increased infarct volumes and neurological severity scores, and poorer angiogenesis. Bone marrow-EPCs treated with palmitic acid (PA) showed impaired functions and inhibited activity of AMP-activated protein kinase (AMPK). Notably, AMPK deficiency aggravated EPC dysfunction, further decreased mitochondrial membrane potential, and increased reactive oxygen species level in EPCs with PA treatment. Furthermore, the expression of fatty acid oxidation (FAO)-related genes was remarkably reduced, and carnitine palmitoyltransferase 1A (CPT1A) protein expression was downregulated in AMPK-deficient EPCs. AMPK deficiency aggravated neurological severity scores and angiogenesis in ischemic brain of HFD-fed mice, accompanied by suppressed protein level of CPT1A. EPC transplantation corrected impaired neurological severity scores and angiogenesis in AMPK-deficient mice. CONCLUSION: Our findings suggest that AMPK deficiency aggravates poor angiogenesis in ischemic brain by mediating FAO and oxidative stress thereby inducing EPC dysfunction in hyperlipidemic mice.


Asunto(s)
Células Progenitoras Endoteliales , Ácidos Grasos , Hiperlipidemias , Accidente Cerebrovascular Isquémico , Ratones Endogámicos C57BL , Animales , Células Progenitoras Endoteliales/metabolismo , Hiperlipidemias/metabolismo , Hiperlipidemias/complicaciones , Ratones , Masculino , Ácidos Grasos/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Dieta Alta en Grasa/efectos adversos , Proteínas Quinasas Activadas por AMP/metabolismo , Modelos Animales de Enfermedad , Oxidación-Reducción , Carnitina O-Palmitoiltransferasa/metabolismo , Neovascularización Fisiológica/fisiología , Ratones Noqueados , Angiogénesis
11.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167172, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38631409

RESUMEN

The skeletal muscle is a metabolically heterogeneous tissue that plays a key role in maintaining whole-body glucose homeostasis. It is well known that muscle insulin resistance (IR) precedes the development of type 2 diabetes. There is a consensus that the accumulation of specific lipid species in the tissue can drive IR. However, the role of the mitochondrial fatty-acid ß-oxidation in IR and, consequently, in the control of glucose uptake remains paradoxical: interventions that either inhibit or activate fatty-acid ß-oxidation have been shown to prevent IR. We here discuss the current theories and evidence for the interplay between ß-oxidation and glucose uptake in IR. To address the underlying intricacies, we (1) dive into the control of glucose uptake fluxes into muscle tissues using the framework of Metabolic Control Analysis, and (2) disentangle concepts of flux and catalytic capacities taking into account skeletal muscle heterogeneity. Finally, we speculate about hitherto unexplored mechanisms that could bring contrasting evidence together. Elucidating how ß-oxidation is connected to muscle IR and the underlying role of muscle heterogeneity enhances disease understanding and paves the way for new treatments for type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Ácidos Grasos , Glucosa , Resistencia a la Insulina , Músculo Esquelético , Oxidación-Reducción , Humanos , Músculo Esquelético/metabolismo , Ácidos Grasos/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Animales , Glucosa/metabolismo
12.
Biomolecules ; 14(4)2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38672466

RESUMEN

Inverted fatty acid ß-oxidation represents a versatile biochemical platform for biosynthesis by the engineered microbial strains of numerous value-added chemicals from convenient and abundant renewable carbon sources, including biomass-derived sugars. Although, in recent years, significant progress has been made in the production through this pathway of n-alcohols, 1,3-diols, and carboxylic acids and its 2,3-unsaturated derivatives, the potential of the pathway for the biosynthesis of 3-hydroxycarboxylic acids remained almost undisclosed. In this study, we demonstrate the microaerobic production of even-chain-length C4-C8 3-hydroxycarboxylic acids from glucose through the inverted fatty acid ß-oxidation by engineered E. coli strains. The notable accumulation of target compounds was achieved upon the strong constitutive expression of the genes atoB, fadA, fadB, fadE/fabI, and tesB, which code for the key enzymes catalysing reactions of aerobic fatty acid ß-oxidation and thioesterase II, in strains devoid of mixed-acid fermentation pathways and lacking nonspecific thioesterase YciA. The best performing recombinants were able to synthesise up to 14.5 mM of 3-hydroxycarboxylic acids from glucose with a total yield of 0.34 mol/mol and a C4/C6/C8 ratio averaging approximately 63/28/9. The results provide a framework for the development of highly efficient strains and processes for the bio-based production of valuable 3-hydroxycarboxylates from renewable raw materials.


Asunto(s)
Ácidos Carboxílicos , Escherichia coli , Ácidos Grasos , Glucosa , Ingeniería Metabólica , Oxidación-Reducción , Escherichia coli/metabolismo , Escherichia coli/genética , Glucosa/metabolismo , Ácidos Grasos/metabolismo , Ácidos Grasos/biosíntesis , Ácidos Carboxílicos/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética
13.
Neurobiol Dis ; 194: 106462, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38442845

RESUMEN

DYT-TOR1A (DYT1) dystonia, characterized by reduced penetrance and suspected environmental triggers, is explored using a "second hit" DYT-TOR1A rat model. We aim to investigate the biological mechanisms driving the conversion into a dystonic phenotype, focusing on the striatum's role in dystonia pathophysiology. Sciatic nerve crush injury was induced in ∆ETorA rats, lacking spontaneous motor abnormalities, and wild-type (wt) rats. Twelve weeks post-injury, unbiased RNA-sequencing was performed on the striatum to identify differentially expressed genes (DEGs) and pathways. Fenofibrate, a PPARα agonist, was introduced to assess its effects on gene expression. 18F-FDG autoradiography explored metabolic alterations in brain networks. Low transcriptomic variability existed between naïve wt and ∆ETorA rats (17 DEGs). Sciatic nerve injury significantly impacted ∆ETorA rats (1009 DEGs) compared to wt rats (216 DEGs). Pathway analyses revealed disruptions in energy metabolism, specifically in fatty acid ß-oxidation and glucose metabolism. Fenofibrate induced gene expression changes in wt rats but failed in ∆ETorA rats. Fenofibrate increased dystonia-like movements in wt rats but reduced them in ∆ETorA rats. 18F-FDG autoradiography indicated modified glucose metabolism in motor and somatosensory cortices and striatum in both ∆ETorA and wt rats post-injury. Our findings highlight perturbed energy metabolism pathways in DYT-TOR1A dystonia, emphasizing compromised PPARα agonist efficacy in the striatum. Furthermore, we identify impaired glucose metabolism in the brain network, suggesting a potential shift in energy substrate utilization in dystonic DYT-TOR1A rats. These results contribute to understanding the pathophysiology and potential therapeutic targets for DYT-TOR1A dystonia.


Asunto(s)
Distonía , Trastornos Distónicos , Fenofibrato , Ratas , Animales , Distonía/genética , Distonía/metabolismo , Roedores/metabolismo , Fluorodesoxiglucosa F18 , PPAR alfa/metabolismo , Trastornos Distónicos/genética , Encéfalo/metabolismo , Metabolismo Energético , Glucosa
14.
Mech Ageing Dev ; 219: 111931, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38554949

RESUMEN

Impaired mitochondrial fatty acid ß-oxidation (FAO) plays a role in the onset of several age-associated diseases, including atherosclerosis. In the current work, we investigated the efficacies of mitochondria-targeted esculetin (Mito-Esc) and metformin in enhancing FAO in human aortic endothelial cells (HAECs), and its relevance in the delay of cellular senescence and age-associated atherosclerotic plaque formation in Apoe-/- mice. Chronic culturing of HAECs with either Mito-Esc or metformin increased oxygen consumption rates (OCR), and caused delay in senescence features. Conversely, etomoxir (CPT1 inhibitor) reversed Mito-Esc- and metformin-induced OCR, and caused premature endothelial senescence. Interestingly, Mito-Esc, unlike metformin, in the presence of etomoxir failed to preserve OCR. Thereby, underscoring Mito-Esc's exclusive reliance on FAO as an energy source. Mechanistically, chronic culturing of HAECs with either Mito-Esc or metformin led to AMPK activation, increased CPT1 activity, and acetyl-CoA levels along with a concomitant reduction in malonyl-CoA levels, and lipid accumulation. Similar results were observed in Apoe-/- mice aorta and liver tissue with a parallel reduction in age-associated atherosclerotic plaque formation and degeneration of liver with either Mito-Esc or metformin administration. Together, Mito-Esc and metformin by potentiating FAO, may have a role in the delay of cellular senescence by modulating mitochondrial function.


Asunto(s)
Aterosclerosis , Senescencia Celular , Células Endoteliales , Ácidos Grasos , Metformina , Mitocondrias , Oxidación-Reducción , Umbeliferonas , Animales , Metformina/farmacología , Umbeliferonas/farmacología , Senescencia Celular/efectos de los fármacos , Ratones , Oxidación-Reducción/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Humanos , Aterosclerosis/metabolismo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/patología , Ácidos Grasos/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Envejecimiento/metabolismo , Envejecimiento/efectos de los fármacos
15.
Mol Genet Metab ; 142(1): 108351, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38430613

RESUMEN

Fatty acid oxidation disorders (FAODs) are a family of rare, genetic disorders that affect any part of the fatty acid oxidation pathway. Patients present with severe phenotypes, such as hypoketotic hypoglycemia, cardiomyopathy, and rhabdomyolysis, and currently manage these symptoms by the avoidance of fasting and maintaining a low-fat, high-carbohydrate diet. Because knowledge about FAODs is limited due to the small number of patients, rodent models have been crucial in learning more about these disorders, particularly in studying the molecular mechanisms involved in different phenotypes and in evaluating treatments for patients. The purpose of this review is to present the different FAOD mouse models and highlight the benefits and limitations of using these models. Specifically, we discuss the phenotypes of the available FAOD mouse models, the potential molecular causes of prominent FAOD phenotypes that have been studied using FAOD mouse models, and how FAOD mouse models have been used to evaluate treatments for patients.


Asunto(s)
Modelos Animales de Enfermedad , Ácidos Grasos , Errores Innatos del Metabolismo Lipídico , Oxidación-Reducción , Animales , Ratones , Ácidos Grasos/metabolismo , Humanos , Errores Innatos del Metabolismo Lipídico/genética , Errores Innatos del Metabolismo Lipídico/metabolismo , Errores Innatos del Metabolismo Lipídico/patología , Fenotipo , Cardiomiopatías/metabolismo , Cardiomiopatías/genética , Cardiomiopatías/patología , Cardiomiopatías/etiología
16.
Environ Res ; 248: 118305, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38307183

RESUMEN

Chlorinated polyfluorinated ether sulfonate (F-53B), a substitute of perfluorooctane sulfonic acid (PFOS), has attracted significant attention for its link to hepatotoxicity and enterotoxicity. Nevertheless, the underlying mechanisms of F-53B-induced enterohepatic toxicity remain incompletely understood. This study aimed to explore the role of F-53B exposure on enterohepatic injury based on the gut microbiota, pathological and molecular analysis in mice. Here, we exposed C57BL/6 mice to F-53B (0, 4, 40, and 400 µg/L) for 28 days. Our findings revealed a significant accumulation of F-53B in the liver, followed by small intestines, and feces. In addition, F-53B induced pathological collagen fiber deposition and lipoid degeneration, up-regulated the expression of fatty acid ß-oxidation-related genes (PPARα and PPARγ, etc), while simultaneously down-regulating pro-inflammatory genes (Nlrp3, IL-1ß, and Mcp1) in the liver. Meanwhile, F-53B induced ileal mucosal barrier damage, and an up-regulation of pro-inflammatory genes and mucosal barrier-related genes (Muc1, Muc2, Claudin1, Occludin, Mct1, and ZO-1) in the ileum. Importantly, F-53B distinctly altered gut microbiota compositions by increasing the abundance of Akkermansia and decreasing the abundance of Prevotellaceae_NK3B31_group in the feces. F-53B-altered microbiota compositions were significantly associated with genes related to fatty acid ß-oxidation, inflammation, and mucosal barrier. In summary, our results demonstrate that F-53B is capable of inducing hepatic injury, ileitis, and gut microbiota dysbiosis in mice, and the gut microbiota dysbiosis may play an important role in the F-53B-induced enterohepatic toxicity.


Asunto(s)
Microbioma Gastrointestinal , Ileítis , Ratones , Animales , Disbiosis , Pez Cebra/metabolismo , Ratones Endogámicos C57BL , Hígado , Ácidos Grasos/metabolismo
17.
Front Biosci (Landmark Ed) ; 29(2): 66, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38420815

RESUMEN

BACKGROUND: Gynecological malignancies, such as endometrial cancer (EC) and uterine cancer are prevalent. Increased Acyl-CoA synthetase long-chain family member 1 (ACSL1) activity may contribute to aberrant lipid metabolism, which is a potential factor that contributes to the pathogenesis of endometrial cancer. This study aimed to elucidate the potential molecular mechanisms by which ACSL1 is involved in lipid metabolism in endometrial cancer, providing valuable insights for targeted therapeutic strategies. METHODS: Xenograft mouse models were used to assess the effect of ACSL1 on the regulation of endometrial cancer progression. ACSL1 protein levels were assessed via immunohistochemistry and immunoblotting analysis. To assess the migratory potential of Ishikawa cells, wound-healing and Transwell invasion assays were performed. Changes in lipids in serum samples from mice with endometrial cancer xenotransplants were examined in an untargeted lipidomic study that combined multivariate statistical methods with liquid chromatography‒mass spectrometry (LC/MS). RESULTS: Patient sample and tissue microarray data suggested that higher ACSL1 expression is strongly associated with the malignant progression of EC. Overexpression of ACSL1 enhances fatty acid ß-oxidation and 5'-adenylate triphosphate (ATP) generation in EC cells, promoting cell proliferation and migration. Lipidomic analysis revealed that significant changes were induced by ACSL1, including changes to 28 subclasses of lipids and a total of 24,332 distinct lipids that were detected in both positive and negative ion modes. Moreover, pathway analysis revealed the predominant association of these lipid modifications with the AMPK/CPT1C/ATP pathway and fatty acid ß-oxidation. CONCLUSIONS: This study indicates that ACSL1 regulates the AMPK/CPT1C/ATP pathway, which induces fatty acid ß-oxidation, promotes proliferation and migration, and then leads to the malignant progression of EC.


Asunto(s)
Neoplasias Endometriales , Ácidos Grasos , Humanos , Ratones , Animales , Femenino , Ácidos Grasos/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Metabolismo de los Lípidos , Neoplasias Endometriales/genética , Adenosina Trifosfato/metabolismo , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo
18.
J Agric Food Chem ; 72(8): 4292-4300, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38364826

RESUMEN

(2S)-Eriodictyol, a polyphenolic flavonoid, has found widespread applications in health supplements and food additives. However, the limited availability of plant-derived (2S)-eriodictyol cannot meet the market demand. Microbial production of (2S)-eriodictyol faces challenges, including the low catalytic efficiency of flavone 3'-hydroxylase/cytochrome P450 reductase (F3'H/CPR), insufficient precursor supplementation, and inadequate NADPH regeneration. This study systematically engineered Yarrowia lipolytica for high-level (2S)-eriodictyol production. In doing this, the expression of F3'H/CPR was balanced, and the supply of precursors was enhanced by relieving feedback inhibition of the shikimate pathway, promoting fatty acid ß-oxidation, and increasing the copy number of synthetic pathway genes. These strategies, combined with NADPH regeneration, achieved an (2S)-eriodictyol titer of 423.6 mg/L. Finally, in fed-batch fermentation, a remarkable 6.8 g/L (2S)-eriodictyol was obtained, representing the highest de novo microbial titer reported to date and paving the way for industrial production.


Asunto(s)
Flavanonas , Yarrowia , Yarrowia/genética , Yarrowia/metabolismo , NADP/metabolismo , Ingeniería Metabólica , Redes y Vías Metabólicas
19.
Cancer Lett ; 587: 216724, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38373689

RESUMEN

CD24 is a well-characterized breast cancer (BC) stem cell (BCSC) marker. Primary breast tumor cells having CD24-negativity together with CD44-positivity is known to maintain high metastatic potential. However, the functional role of CD24 gene in triple-negative BC (TNBC), an aggressive subtype of BC, is not well understood. While the significance of CD24 in regulating immune pathways is well recognized in previous studies, the significance of CD24 low expression in onco-signaling and metabolic rewiring is largely unknown. Using CD24 knock-down and over-expression TNBC models, our in vitro and in vivo analysis suggest that CD24 is a tumor suppressor in metastatic TNBC. Comprehensive in silico gene expression analysis of breast tumors followed by lipidomic and metabolomic analyses of CD24-modulated cells revealed that CD24 negativity induces mitochondrial oxidative phosphorylation and reprograms TNBC metabolism toward the fatty acid beta-oxidation (FAO) pathway. CD24 silencing activates PPARα-mediated regulation of FAO in TNBC cells. Further analysis using reverse-phase protein array and its validation using CD24-modulated TNBC cells and xenograft models nominated CD24-NF-κB-CPT1A signaling pathway as the central regulatory mechanism of CD24-mediated FAO activity. Overall, our study proposes a novel role of CD24 in metabolic reprogramming that can open new avenues for the treatment strategies for patients with metastatic TNBC.


Asunto(s)
FN-kappa B , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/patología , PPAR alfa/genética , Línea Celular Tumoral , Ácidos Grasos/metabolismo , Antígeno CD24/genética , Antígeno CD24/metabolismo
20.
Mol Aspects Med ; 96: 101238, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38215610

RESUMEN

Glaucoma is one of the leading causes of visual impairment and blindness worldwide, and is characterized by the progressive damage of retinal ganglion cells (RGCs) and the atrophy of the optic nerve head (ONH). The exact cause of RGC loss and optic nerve damage in glaucoma is not fully understood. The high energy demands of these cells imply a higher sensitivity to mitochondrial defects. Moreover, it has been postulated that the optic nerve is vulnerable towards damage from oxidative stress and mitochondrial dysfunction. To investigate this further, we conducted a pooled analysis of mitochondrial variants related to energy production, specifically focusing on oxidative phosphorylation (OXPHOS) and fatty acid ß-oxidation (FAO). Our findings revealed that patients carrying non-synonymous (NS) mitochondrial DNA (mtDNA) variants within the OXPHOS complexes had an almost two-fold increased risk of developing glaucoma. Regarding FAO, our results demonstrated that longer-chain acylcarnitines (AC) tended to decrease, while shorter-chain AC tended to increase in patients with glaucoma. Furthermore, we observed that the knocking down cpt1a (a key rate-limiting enzyme involved in FAO) in zebrafish induced a degenerative process in the optic nerve and RGC, which resembled the characteristics observed in glaucoma. In conclusion, our study provides evidence that genes encoding mitochondrial proteins involved in energy metabolisms, such as OXPHOS and FAO, are associated with glaucoma. These findings contribute to a better understanding of the molecular mechanisms underlying glaucoma pathogenesis and may offer potential targets for therapeutic interventions in the future.


Asunto(s)
Glaucoma , Fosforilación Oxidativa , Animales , Humanos , Pez Cebra/genética , Pez Cebra/metabolismo , Glaucoma/genética , Glaucoma/tratamiento farmacológico , Glaucoma/patología , Mitocondrias/metabolismo , ADN Mitocondrial/genética , Ácidos Grasos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA