Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 366
Filtrar
1.
Pestic Biochem Physiol ; 204: 106107, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39277411

RESUMEN

The interaction between environmental factors affecting honey bees is of growing concern due to their potential synergistic effects on bee health. Our study investigated the interactive impact of Varroa destructor and chlorothalonil on workers' survival, fat body morphology, and the expression of gene associated with detoxification, immunity, and nutrition metabolism during their adult stage. We found that both chlorothalonil and V. destructor significantly decreased workers' survival rates, with a synergistic effect observed when bees were exposed to both stressors simultaneously. Morphological analysis of fat body revealed significant alterations in trophocytes, particularly a reduction in vacuoles and granules after Day 12, coinciding with the transition of the bees from nursing to other in-hive work tasks. Gene expression analysis showed significant changes in detoxification, immunity, and nutrition metabolism over time. Detoxification genes, such as CYP9Q2, CYP9Q3, and GST-D1, were downregulated in response to stressor exposure, indicating a potential impairment in detoxification processes. Immune-related genes, including defensin-1, Dorsal-1, and Kayak, exhibited an initially upregulation followed by varied expression patterns, suggesting a complex immune response to stressors. Nutrition metabolism genes, such as hex 70a, AmIlp2, VGMC, AmFABP, and AmPTL, displayed dynamic expression changes, reflecting alterations in nutrient utilization and energy metabolism in response to stressors. Overall, these findings highlight the interactive and dynamic effects of environmental stressor on honey bees, providing insights into the mechanisms underlying honey bee decline. These results emphasize the need to consider the interactions between multiple stressors in honey bee research and to develop management strategies to mitigate their adverse effects on bee populations.


Asunto(s)
Nitrilos , Varroidae , Animales , Abejas/parasitología , Abejas/efectos de los fármacos , Varroidae/fisiología , Varroidae/efectos de los fármacos , Nitrilos/toxicidad , Cuerpo Adiposo/metabolismo , Cuerpo Adiposo/efectos de los fármacos , Fungicidas Industriales/toxicidad
2.
Insect Sci ; 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39279283

RESUMEN

Bombyx mori ELAV-like-1 (BmEL-1) and B. mori ELAV-like-2 (BmEL-2) are 2 members of the ELAV-like family of RNA-binding proteins. Mutations in Bmel-1 and Bmel-2 resulted in 5.8% and 28.5% decreases in larval weight on the 3rd day of the 5th instar larva (L5D3), respectively. Triglycerides (TG) are the most important energy resource and are the main component of neutral fat (NF) in animals. To investigate the role of Bmelav-like genes in the synthesis and decomposition of TG, transcriptomic, and metabolic analyses were performed on the whole bodies on the 1st day of the 2nd instar larvae (L2D1) and on fat bodies on L5D3 of Bmel-1- and Bmel-2- mutants, respectively. As compared with the control silkworm, differentially expressed genes generated in both mutants were mainly enriched in lysine degradation, fatty acid (FA) metabolism, and unsaturated FAs biosynthesis. The diglyceride and phosphatide contents were significantly lower in Bmel-1- and Bmel-2- fat bodies than those of the control group. Consistently, the NF content of both mutants' fat bodies were reduced by 50% and 60%, respectively. BmEL-2 positively regulates BmAGPATγ (B. mori 1-acyl-sn-glycerol-3-phosphate acyltransferase gamma, LOC101741736) and BmFaF2 (B. mori fatty acid synthetase-associated factor 2, LOC101739090) expression by binding to the specific regions of their 3' untranslated regions in BmN cells. This study suggests that BmEL-2 may be an important regulator of BmAGPATγ and BmFAF2 expression and thereby participates in TG metabolism in the silkworm fat body.

3.
Aging Clin Exp Res ; 36(1): 185, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251484

RESUMEN

BACKGROUND: Sarcopenia, a condition marked by progressive muscle mass and function decline, presents significant challenges in aging populations and those with chronic illnesses. Current standard treatments such as dietary interventions and exercise programs are often unsustainable. There is increasing interest in pharmacological interventions like bimagrumab, a monoclonal antibody that promotes muscle hypertrophy by inhibiting muscle atrophy ligands. Bimagrumab has shown effectiveness in various conditions, including sarcopenia. AIM: The primary objective of this meta-analysis is to evaluate the impact of bimagrumab treatment on both physical performance and body composition among patients diagnosed with sarcopenia. MATERIALS AND METHODS: This meta-analysis follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We systematically searched PubMed, Ovid/Medline, Web of Science, and the Cochrane Library databases up to June 2024 using appropriate Medical Subject Headings (MeSH) terms and keywords related to bimagrumab and sarcopenia. Eligible studies were randomized controlled trials (RCTs) that assessed the effects of bimagrumab on physical performance (e.g., muscle strength, gait speed, six-minute walk distance) and body composition (e.g., muscle volume, fat-free body mass, fat body mass) in patients with sarcopenia. Data extraction was independently performed by two reviewers using a standardized form, with discrepancies resolved through discussion or consultation with a third reviewer. RESULTS: From an initial search yielding 46 records, we screened titles, abstracts, and full texts to include seven RCTs in our meta-analysis. Bimagrumab treatment significantly increased thigh muscle volume (mean difference [MD] 5.29%, 95% confidence interval [CI] 4.08% to 6.50%, P < 0.001; moderate heterogeneity χ2 = 6.41, I2 = 38%, P = 0.17) and fat-free body mass (MD 1.90 kg, 95% CI 1.57 kg to 2.23 kg, P < 0.001; moderate heterogeneity χ2 = 8.60, I2 = 30%, P = 0.20), while decreasing fat body mass compared to placebo (MD - 4.55 kg, 95% CI - 5.08 kg to - 4.01 kg, P < 0.001; substantial heterogeneity χ2 = 27.44, I2 = 89%, P < 0.001). However, no significant improvement was observed in muscle strength or physical performance measures such as gait speed and six-minute walk distance with bimagrumab treatment, except among participants with slower baseline walking speeds or distances. DISCUSSION AND CONCLUSION: This meta-analysis provides valuable insights into the effects of bimagrumab on sarcopenic patients, highlighting its significant improvements in body composition parameters but limited impact on functional outcomes. The observed heterogeneity in outcomes across studies underscores the need for cautious interpretation, considering variations in study populations, treatment durations, and outcome assessments. While bimagrumab shows promise as a safe pharmacological intervention for enhancing muscle mass and reducing fat mass in sarcopenia, its minimal effects on muscle strength and broader physical performance suggest potential limitations in translating body composition improvements into functional gains. Further research is needed to clarify its long-term efficacy, optimal dosing regimens, and potential benefits for specific subgroups of sarcopenic patients.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Composición Corporal , Sarcopenia , Humanos , Composición Corporal/efectos de los fármacos , Sarcopenia/tratamiento farmacológico , Anticuerpos Monoclonales Humanizados/uso terapéutico , Fuerza Muscular/efectos de los fármacos , Ensayos Clínicos Controlados Aleatorios como Asunto
4.
Wiad Lek ; 77(7): 1338-1345, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39241131

RESUMEN

OBJECTIVE: Aim: To determine the relationship between body composition and hormonal levels in young men with metabolic syndrome. PATIENTS AND METHODS: Materials and Methods: 123 males with a mean age of 24.1 ± 4.3 years (33 with metabolic syndrome (MS group) and 90 healthy physically active men (control group) were recruited at the study of body composition and hormone status. The total testosterone, cortisol, and insulin in blood serum by ELISA, the body weight (kg), lean body mass (kg) and fat mass (kg, %) by bioimpedance analysis method were investigated. RESULTS: Results: It was establish the significand difference the mean value of body composition (body weight, lean body weight, fat body mass (kg, %), testosterone, cortisol insulin, and glucose concentration between MS group and control group. CONCLUSION: Conclusions: A present study established the significant correlation of testosterone, insulin, and glucose concentration with fat body mass in all participants (MS and control groups). The negativee effect of overweight (BMI > 25; FBM > 18 %) and obesity (BMI > 30; FBM > 25 %) for testosterone concentration was determined due to an increase of FBM > 20 % and insulin increasing > 9,0 µlU/l.


Asunto(s)
Composición Corporal , Hidrocortisona , Insulina , Síndrome Metabólico , Testosterona , Humanos , Masculino , Síndrome Metabólico/sangre , Testosterona/sangre , Adulto , Adulto Joven , Insulina/sangre , Hidrocortisona/sangre , Glucemia/metabolismo , Glucemia/análisis , Índice de Masa Corporal
5.
J Agric Food Chem ; 72(36): 19680-19688, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39225316

RESUMEN

Spodoptera litura is a significant agricultural pest, and its glutathione S-transferase (GST) plays a crucial role in insecticide resistance. This study aimed to investigate the relationship between the SlGSTe11 gene of S. litura and resistance to cyantraniliprole and nicotine. Transcriptome analysis revealed that SlGSTe11 is highly expressed mainly in fat bodies, with a significant increase in SlGSTe11 gene expression under induction by cyantraniliprole and nicotine. The ectopic expression of the SlGSTe11 gene in transgenic fruit flies resulted in a 5.22-fold increase in the tolerance to cyantraniliprole. Moreover, compared to the UAS-SlGSTe11 line, the Act5C-UAS>SlGSTe11 line laid more eggs and had a lower mortality after nicotine exposure. RNAi-mediated inhibition of SlGSTe11 gene expression led to a significant increase in the mortality of S. litura under cyantraniliprole exposure. In vitro metabolism experiments demonstrated that the recombinant SlGSTe11 protein efficiently metabolizes cyantraniliprole. Molecular docking results indicated that SlGSTe11 has a strong affinity for both cyantraniliprole and nicotine. These findings suggest that SlGSTe11 is involved in the development of resistance to cyantraniliprole and nicotine in S. litura.


Asunto(s)
Cuerpo Adiposo , Glutatión Transferasa , Proteínas de Insectos , Resistencia a los Insecticidas , Insecticidas , Nicotina , Pirazoles , Spodoptera , ortoaminobenzoatos , Animales , Spodoptera/genética , Spodoptera/efectos de los fármacos , Spodoptera/metabolismo , Spodoptera/enzimología , Spodoptera/crecimiento & desarrollo , Insecticidas/farmacología , Insecticidas/metabolismo , Insecticidas/química , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/química , ortoaminobenzoatos/metabolismo , ortoaminobenzoatos/farmacología , Pirazoles/farmacología , Nicotina/metabolismo , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Glutatión Transferasa/química , Resistencia a los Insecticidas/genética , Cuerpo Adiposo/metabolismo , Cuerpo Adiposo/enzimología , Cuerpo Adiposo/efectos de los fármacos , Simulación del Acoplamiento Molecular
6.
Arch Insect Biochem Physiol ; 116(4): e22146, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39190478

RESUMEN

T2 RNases are transferase-type enzymes distributed across phyla, crucial for breaking down single-stranded RNA molecules. In addition to their canonical function, several T2 enzymes exhibit pleiotropic roles, contributing to various biological processes, such as the immune response in invertebrates and vertebrates. This study aims at characterizing RNASET2 in the larvae of black soldier fly (BSF), Hermetia illucens, which are used for organic waste reduction and the production of valuable insect biomolecules for feed formulation and other applications. Given the exposure of BSF larvae to pathogens present in the feeding substrate, it is likely that the mechanisms of their immune response have undergone significant evolution and increased complexity. After in silico characterization of HiRNASET2, demonstrating the high conservation of this T2 homolog, we investigated the expression pattern of the enzyme in the fat body and hemocytes, two districts mainly involved in the insect immune response, in larvae challenged with bacterial infection. While no variation in HiRNASET2 expression was observed in the fat body following infection, a significant upregulation of HiRNASET2 synthesis occurred in hemocytes shortly after the injection of bacteria in the larva. The intracellular localization of HiRNASET2 in lysosomes of plasmatocytes, its extracellular association with bacteria, and the presence of a putative antimicrobial domain in the molecule, suggest its potential role in RNA clean-up and as an alarm molecule promoting phagocytosis activation by hemocytes. These insights contribute to the characterization of the immune response of Hermetia illucens larvae and may facilitate the development of animal feedstuff enriched with highly valuable BSF bioactive compounds.


Asunto(s)
Dípteros , Larva , Animales , Larva/inmunología , Dípteros/inmunología , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Hemocitos/inmunología , Hemocitos/metabolismo , Simuliidae/inmunología , Ribonucleasas/metabolismo , Ribonucleasas/genética , Cuerpo Adiposo/metabolismo , Cuerpo Adiposo/inmunología , Inmunidad Innata
7.
J Agric Food Chem ; 72(35): 19323-19332, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39174876

RESUMEN

Azadirachtin is a widely used botanical pesticide for agricultural pest control worldwide. However, the molecular mechanisms of azadirachtin in insects are not fully understood. In this study, histological analysis and RNA sequencing were conducted to investigate the impact of azadirachtin on the larval development of Spodoptera frugiperda. Under azadirachtin exposure, the development was completely inhibited, and the major internal tissues, fat body, and midgut were strongly damaged under histological analysis. Differential gene expression analysis demonstrated that nutrient absorption and detoxification metabolism-related genes are differentially expressed. Interestingly, the expression of the apoptosis-related gene, caspase-8, was significantly inhibited under exposure to azadirachtin. In addition, after knocking down the expression of the caspase-8 gene, the fat body displayed a similar apoptotic phenotype as azadirachtin treatment; the distribution of chromatin and lipid droplets was uneven in the fat body cells. Thus, the results in this study demonstrated that exposure to azadirachtin rapidly activates apoptosis, resulting in innate tissue disruption, ultimately arresting larval development in S. frugiperda.


Asunto(s)
Apoptosis , Caspasa 8 , Cuerpo Adiposo , Proteínas de Insectos , Insecticidas , Larva , Limoninas , Spodoptera , Animales , Spodoptera/efectos de los fármacos , Spodoptera/genética , Spodoptera/crecimiento & desarrollo , Limoninas/farmacología , Apoptosis/efectos de los fármacos , Cuerpo Adiposo/efectos de los fármacos , Cuerpo Adiposo/metabolismo , Larva/crecimiento & desarrollo , Larva/efectos de los fármacos , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Insecticidas/farmacología , Caspasa 8/metabolismo , Caspasa 8/genética
8.
Adv Exp Med Biol ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39192070

RESUMEN

Carbohydrates and lipids integrate into a complex metabolic network that is essential to maintain homeostasis. In insects, as in most metazoans, dietary carbohydrates are taken up as monosaccharides whose excess is toxic, even at relatively low concentrations. To cope with this toxicity, monosaccharides are stored either as glycogen or neutral lipids, the latter constituting a quasi-unlimited energy store. Breakdown of these stores in response to energy demand depends on insect species and on several physiological parameters. In this chapter, we review the multiple metabolic pathways and strategies linking carbohydrates and lipids that insects utilize to respond to nutrient availability, food scarcity or physiological activities.

9.
Insect Sci ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39185918

RESUMEN

The fat body of the holometabolous insect is remodeled by the degradation of the larval fat body and the development of the adult fat body during metamorphosis. However, the mechanism of adult fat body development is quite unclear. Using the agricultural pest Helicoverpa armigera, the cotton bollworm, as a model, we revealed that the development of adult fat body was regulated by glycolysis, triglyceride (triacylglycerol [TAG]) synthesis, cell proliferation, and cell adhesion. RNA sequencing detected a set of genes that were upregulated in the 8-d late pupal fat body at a late metamorphic stage compared with the 2-d pupal fat body at an earlier metamorphic stage. The pathways for glycolysis, TAG synthesis, cell proliferation, and cell adhesion were enriched by the differentially expressed genes, and the key genes linked with these pathways showed increased expression in the 8-d pupal fat body. Knockdown of phosphofructokinase (Pfk), acetyl-CoA carboxylase (Acc1), phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit (P110) and collagen alpha-1(IV) chain (Col4a1) by RNA interference resulted in abnormal eclosion and death at pupal stages, and repressed lipid droplets accumulation and adult fat body development. The expression of Acc1, P110, and Col4a1 was repressed by the insect steroid hormone 20-hydroxyecdysone (20E). The critical genes in the 20E pathway appeared to decrease at the late pupal stage. These data suggested that the development of the insect adult fat body is regulated by glycolysis, lipids synthesis, cell proliferation, and cell adhesion at the late pupal stage when the 20E signal decreases.

10.
Biol Open ; 13(8)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39041865

RESUMEN

Energy storage and endocrine functions of the Drosophila fat body make it an excellent model for elucidating mechanisms that underlie physiological and pathophysiological organismal metabolism. Combined with Drosophila's robust genetic and immunofluorescence microscopy toolkits, studies of Drosophila fat body function are ripe for cell biological analysis. Unlike the larval fat body, which is easily removed as a single, cohesive sheet of tissue, isolating intact adult fat body proves to be more challenging, thus hindering consistent immunofluorescence labeling even within a single piece of adipose tissue. Here, we describe an improved approach to handling Drosophila abdomens that ensures full access of the adult fat body to solutions generally used in immunofluorescence labeling protocols. In addition, we assess the quality of fluorescence reporter expression and antibody immunoreactivity in response to variations in fixative type, fixation incubation time, and detergent used for cellular permeabilization. Overall, we provide several recommendations for steps in a whole-mount staining protocol that results in consistent and robust immunofluorescence labeling of the adult Drosophila fat body.


Asunto(s)
Tejido Adiposo , Drosophila melanogaster , Técnica del Anticuerpo Fluorescente , Animales , Drosophila melanogaster/metabolismo , Técnica del Anticuerpo Fluorescente/métodos , Tejido Adiposo/metabolismo , Coloración y Etiquetado/métodos , Cuerpo Adiposo/metabolismo , Microscopía Fluorescente/métodos
11.
FASEB J ; 38(14): e23805, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39003630

RESUMEN

Iron homeostasis is of critical importance to living organisms. Drosophila melanogaster has emerged as an excellent model to study iron homeostasis, while the regulatory mechanism of iron metabolism remains poorly understood. Herein, we accidently found that knockdown of juvenile hormone (JH) acid methyltransferase (Jhamt) specifically in the fat body, a key rate-limiting enzyme for JH synthesis, led to iron accumulation locally, resulting in serious loss and dysfunction of fat body. Jhamt knockdown-induced phenotypes were mitigated by iron deprivation, antioxidant and Ferrostatin-1, a well-known inhibitor of ferroptosis, suggesting ferroptosis was involved in Jhamt knockdown-induced defects in the fat body. Further study demonstrated that upregulation of Tsf1 and Malvolio (Mvl, homolog of mammalian DMT1), two iron importers, accounted for Jhamt knockdown-induced iron accumulation and dysfunction of the fat body. Mechanistically, Kr-h1, a key transcription factor of JH, acts downstream of Jhamt inhibiting Tsf1 and Mvl transcriptionally. In summary, the findings indicated that fat body-derived Jhamt is required for the development of Drosophila by maintaining iron homeostasis in the fat body, providing unique insight into the regulatory mechanisms of iron metabolism in Drosophila.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Cuerpo Adiposo , Homeostasis , Hierro , Metiltransferasas , Animales , Drosophila melanogaster/metabolismo , Hierro/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Cuerpo Adiposo/metabolismo , Metiltransferasas/metabolismo , Metiltransferasas/genética , Hormonas Juveniles/metabolismo , Ferroptosis/fisiología , Factores de Transcripción de Tipo Kruppel
12.
Front Endocrinol (Lausanne) ; 15: 1413690, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948521

RESUMEN

Objectives: The relationship between adiposity and sepsis has received increasing attention. This study aims to explore the causal relationship between life course adiposity and the sepsis incidence. Methods: Mendelian randomization (MR) method was employed in this study. Instrumental variants were obtained from genome-wide association studies for life course adiposity, including birth weight, childhood body mass index (BMI), childhood obesity, adult BMI, waist circumference, visceral adiposity, and body fat percentage. A meta-analysis of genome-wide association studies for sepsis including 10,154 cases and 454,764 controls was used in this study. MR analyses were performed using inverse variance weighted, MR Egger regression, weighted median, weighted mode, and simple mode. Instrumental variables were identified as significant single nucleotide polymorphisms at the genome-wide significance level (P < 5×10-8). The sensitivity analysis was conducted to assess the reliability of the MR estimates. Results: Analysis using the MR analysis of inverse variance weighted method revealed that genetic predisposition to increased childhood BMI (OR = 1.29, P = 0.003), childhood obesity (OR = 1.07, P = 0.034), adult BMI (OR = 1.38, P < 0.001), adult waist circumference (OR = 1.01, P = 0.028), and adult visceral adiposity (OR = 1.53, P < 0.001) predicted a higher risk of sepsis. Sensitivity analysis did not identify any bias in the MR results. Conclusion: The results demonstrated that adiposity in childhood and adults had causal effects on sepsis incidence. However, more well-designed studies are still needed to validate their association.


Asunto(s)
Adiposidad , Índice de Masa Corporal , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Polimorfismo de Nucleótido Simple , Sepsis , Humanos , Adiposidad/genética , Sepsis/genética , Sepsis/epidemiología , Predisposición Genética a la Enfermedad , Obesidad Infantil/genética , Obesidad Infantil/epidemiología , Obesidad Infantil/complicaciones , Adulto , Circunferencia de la Cintura , Niño , Masculino , Femenino
13.
Environ Sci Pollut Res Int ; 31(31): 43927-43940, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38913262

RESUMEN

The caterpillar Anticarsia gemmatalis (Lepidoptera: Noctuidae) is a prevalent pest in soybean plantations, managed using both natural and synthetic chemical products. However, the emergence of resistance in some populations emphasizes the need to explore alternative insecticides. Flupyradifurone, a neurotoxic insecticide, has not been previously used for controlling A. gemmatalis. This study evaluated the potential of flupyradifurone in the management of A. gemmatalis. Initially, the toxicity and anti-feeding effects, as well as histopathological and cytotoxic impacts, of flupyradifurone on A. gemmatalis were evaluated. Subsequently, the indirect effects of flupyradifurone on the midgut and fat body of the predator Podisus nigrispinus (Hemiptera: Pentatomidae) were verified. The results indicate the susceptibility of caterpillars to flupyradifurone, with an LC50 of 5.10 g L-1. Furthermore, the insecticide adversely affects survival, induces an anti-feeding response, and inflicts damage on the midgut of the caterpillars. However, flupyradifurone also leads to side effects in the predator P. nigrispinus through indirect intoxication of the caterpillars, including midgut and fat body damage. While flupyradifurone demonstrates toxicity to A. gemmatalis, suggesting its potential for the chemical control of this pest, the indirect negative effects on the predator indicate the need for its controlled use in integrated pest management programs with the insecticide and the predator.


Asunto(s)
Insecticidas , Animales , Insecticidas/toxicidad , Larva/efectos de los fármacos , 4-Butirolactona/análogos & derivados , 4-Butirolactona/toxicidad , Heterópteros/efectos de los fármacos , Mariposas Nocturnas/efectos de los fármacos , Lepidópteros/efectos de los fármacos , Piridinas
14.
Adv Exp Med Biol ; 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38874891

RESUMEN

Modern insects have inhabited the earth for hundreds of millions of years, and part of their successful adaptation lies in their many reproductive strategies. Insect reproduction is linked to a high metabolic rate that provides viable eggs in a relatively short time. In this context, an accurate interplay between the endocrine system and the nutrients synthetized and metabolized is essential to produce healthy offspring. Lipids guarantee the metabolic energy needed for egg formation and represent the main energy source consumed during embryogenesis. Lipids availability is tightly regulated by a complex network of endocrine signals primarily controlled by the central nervous system (CNS) and associated endocrine glands, the corpora allata (CA) and corpora cardiaca (CC). This endocrine axis provides hormones and neuropeptides that significatively affect tissues closely involved in successful reproduction: the fat body, which is the metabolic center supplying the lipid resources and energy demanded in egg formation, and the ovaries, where the developing oocytes recruit lipids that will be used for optimal embryogenesis. The post-genomic era and the availability of modern experimental approaches have advanced our understanding of many processes involved in lipid homeostasis; therefore, it is crucial to integrate the findings of recent years into the knowledge already acquired in the last decades. The present chapter is devoted to reviewing major recent contributions made in elucidating the impact of the CNS/CA/CC-fat body-ovary axis on lipid metabolism in the context of insect reproduction, highlighting areas of fruitful research.

15.
Adv Exp Med Biol ; 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38874889

RESUMEN

To ensure optimum health and performance, lipid metabolism needs to be temporally aligned to other body processes and to daily changes in the environment. Central and peripheral circadian clocks and environmental signals such as light provide internal and external time cues to the body. Importantly, each of the key organs involved in insect lipid metabolism contains a molecular clockwork which ticks with a varying degree of autonomy from the central clock in the brain. In this chapter, we review our current knowledge about peripheral clocks in the insect fat body, gut and oenocytes, and light- and circadian-driven diel patterns in lipid metabolites and lipid-related transcripts. In addition, we highlight selected neuroendocrine signaling pathways that are or may be involved in the temporal coordination and control of lipid metabolism.

16.
J Endocrinol Invest ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856966

RESUMEN

PURPOSE: The aim of the study was to analyze the modification of total and regional body composition in early breast cancer patients treated with aromatase inhibitors (AIs). METHODS: This is a prospective, single-center, observational, longitudinal study. Four-hundred and twenty-eight patients treated with adjuvant aromatase inhibitors were enrolled at the Medical Oncology and Breast Unit of Spedali Civili Hospital in Brescia from September 2014 to June 2022. Several body composition parameters including total and regional fat and lean body mass were investigated with dual-energy X-ray absorptiometry (DXA) scan at baseline and after 18 months of treatment with aromatase inhibitors. RESULTS: A significant increase in fat body mass (mean + 7.2%, 95% confidence interval [CI]: 5.5;8.9%) and a reduction in lean body mass (mean -3.1%, 95% CI -3.9; -2.4) were documented in this population. The changes in fat and lean body mass varied considerably according to different body districts ranging between + 3.2% to + 10.9% and from-1.3% to -3.9%, respectively. CONCLUSION: Aromatase inhibitor adjuvant therapy in early breast cancer is associated with changes in body composition, with a wide variability among different body districts, leading to a risk of sarcopenic obesity. Supervised physical exercise that focuses on single body parts that may display detrimental variations may be beneficial for AIs treated patients.

17.
J Agric Food Chem ; 72(23): 12935-12945, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38822796

RESUMEN

Blister beetles of Epicauta impressicornis have attracted attention because they contain a large amount of cantharidin (CTD). To date, however, the synthesis and transfer of CTD in adults of E. impressicornis are largely unknown. Here, we showed that the larvae E. impressicornis are capable of synthesizing CTD and they consume CTD during pupation. Before sexual maturity, both male and female adults synthesized a small amount of CTD, while after sexual maturity, males produced larger amounts of CTD, but females did not. The newly synthesized CTD in males first appeared in the hemolymph and then accumulated in the reproductive system. During the mating, the males transferred CTD to the reproductive system of females. In addition, a farnesyl pyrophosphate synthase (FPPS) gene was identified in male E. impressicornis. RNA-seq analysis, quantitative RT-PCR, and RNA interference analyses were conducted to investigate expression patterns and the functional roles of E. impressicornis FPPS (EiFPPS). Our results indicate that EiFPPS is highly expressed in the fat body of males. Moreover, the knock-down of EiFPPS led to a significant decrease in CTD synthesis. The current study indicates that EiFPPS is expressed in the fat body to regulate CTD synthesis in male E. impressicornis blister beetles.


Asunto(s)
Cantaridina , Escarabajos , Cuerpo Adiposo , Geraniltranstransferasa , Proteínas de Insectos , Animales , Escarabajos/genética , Escarabajos/metabolismo , Escarabajos/enzimología , Cantaridina/metabolismo , Masculino , Cuerpo Adiposo/metabolismo , Cuerpo Adiposo/enzimología , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Geraniltranstransferasa/genética , Geraniltranstransferasa/metabolismo , Femenino , Larva/crecimiento & desarrollo , Larva/genética , Larva/metabolismo
18.
Fly (Austin) ; 18(1): 2352938, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38741287

RESUMEN

To identify genes required for brain growth, we took an RNAi knockdown reverse genetic approach in Drosophila. One potential candidate isolated from this effort is the anti-lipogenic gene adipose (adp). Adp has an established role in the negative regulation of lipogenesis in the fat body of the fly and adipose tissue in mammals. While fat is key to proper development in general, adp has not been investigated during brain development. Here, we found that RNAi knockdown of adp in neuronal stem cells and neurons results in reduced brain lobe volume and sought to replicate this with a mutant fly. We generated a novel adp mutant that acts as a loss-of-function mutant based on buoyancy assay results. We found that despite a change in fat content in the body overall and a decrease in the number of larger (>5 µm) brain lipid droplets, there was no change in the brain lobe volume of mutant larvae. Overall, our work describes a novel adp mutant that can functionally replace the long-standing adp60 mutant and shows that the adp gene has no obvious involvement in brain growth.


Asunto(s)
Encéfalo , Proteínas de Drosophila , Animales , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Encéfalo/metabolismo , Encéfalo/crecimiento & desarrollo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Mutación con Pérdida de Función , Interferencia de ARN , Neuronas/metabolismo , Larva/crecimiento & desarrollo , Larva/genética , Larva/metabolismo , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Drosophila/genética , Drosophila/metabolismo , Drosophila/crecimiento & desarrollo , Tejido Adiposo/metabolismo , Mutación
19.
Artículo en Inglés | MEDLINE | ID: mdl-38820803

RESUMEN

The northern house mosquito, Culex pipiens, employs diapause as an essential survival strategy during winter, inducing important phenotypic changes such as enhanced stress tolerance, lipid accumulation, and extended longevity. During diapause, the cessation of reproductive development represents another distinctive phenotypic change, underlining the need for adjusted modulation of gene expressions within the ovary. Although considerable advancements in screening gene expression profiles in diapausing and non-diapausing mosquitoes, there remains a gap in tissue-specific transcriptomic profiling that could elucidate the complicated formation of diverse diapause features in Cx. pipiens. Here, we filled this gap by utilizing RNA sequencing, providing a detailed examination of gene expression patterns in the fat body and ovary during diapause compared to non-diapause conditions. Functional annotation of upregulated genes identified associations with carbohydrate metabolism, stress tolerance, immunity, and epigenetic regulation. The validation of candidate genes using quantitative real-time PCR verified the differentially expressed genes identified in diapausing mosquitoes. Our findings contribute novel insights into potential regulators during diapause in Cx. pipiens, thereby opening possible avenues for developing innovative vector control strategies.


Asunto(s)
Culex , Cuerpo Adiposo , Perfilación de la Expresión Génica , Ovario , Animales , Culex/genética , Culex/metabolismo , Culex/crecimiento & desarrollo , Femenino , Cuerpo Adiposo/metabolismo , Ovario/metabolismo , Diapausa de Insecto , Redes y Vías Metabólicas , Transcriptoma , Especificidad de Órganos , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo
20.
Front Insect Sci ; 4: 1360320, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638680

RESUMEN

In insects and other animals, nutrition-mediated behaviors are modulated by communication between the brain and peripheral systems, a process that relies heavily on the insulin/insulin-like growth factor signaling pathway (IIS). Previous studies have focused on the mechanistic and physiological functions of insulin-like peptides (ILPs) in critical developmental and adult milestones like pupation or vitellogenesis. Less work has detailed the mechanisms connecting ILPs to adult nutrient-mediated behaviors related to survival and reproductive success. Here we briefly review the range of behaviors linked to IIS in insects, from conserved regulation of feeding behavior to evolutionarily derived polyphenisms. Where possible, we incorporate information from Drosophila melanogaster and other model species to describe molecular and neural mechanisms that connect nutritional status to behavioral expression via IIS. We identify knowledge gaps which include the diverse functional roles of peripheral ILPs, how ILPs modulate neural function and behavior across the lifespan, and the lack of detailed mechanistic research in a broad range of taxa. Addressing these gaps would enable a better understanding of the evolution of this conserved and widely deployed tool kit pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA