Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
EJNMMI Phys ; 10(1): 76, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38044383

RESUMEN

BACKGROUND: Over the past five years, ultrafast high-frequency (HF) readout concepts have advanced the timing performance of silicon photomultipliers (SiPMs). The shown impact in time-of-flight (TOF) techniques can further push the limits in light detection and ranging (LiDAR), time-of-flight positron-emission tomography (TOF-PET), time-of-flight computed tomography (TOF-CT) or high-energy physics (HEP). However, upscaling these electronics to a system-applicable, multi-channel readout, has remained a challenging task, posed by the use of discrete components and a high power consumption. To this day, there are no means to exploit the high TOF resolution of these electronics on system scale or to measure the actual timing performance limits of a full detector block. METHODS: In this work, we present a 16-channel HF readout board, including leading-edge discrimination and a linearized time-over-threshold (TOT) method, which is fully compatible with a high-precision time-to-digital converters (TDCs), such as the picoTDC developed at CERN. The discrete implementation allows ideal adaptation of this readout to a broad range of detection tasks. As a first step, the functionality of the circuit has been tested using the TOFPET2 ASIC as back-end electronics to emulate the TDC, also in view of its properties as a highly scalable data acquisition solution. RESULTS: The produced board is able to mitigate influences of baseline shifts in the TOFPET2 front end, which has been shown in experiments with a pulsed laser, increasing the achievable intrinsic coincidence timing resolution (CTR) of the TOFPET2 readout electronics from 70 ps (FWHM) to 62 ps (FWHM). Single-channel coincidence experiments including a [Formula: see text]-source, 2[Formula: see text]2[Formula: see text]3 mm[Formula: see text] LYSO:Ce,Ca crystals and Broadcom NUV-MT SiPMs resulted in a CTR of 118 ps (FWHM). For a 4[Formula: see text]4 matrix of 3.88[Formula: see text]3.88[Formula: see text]19 mm[Formula: see text] LYSO:Ce,Ca crystals one-to-one coupled to a 4[Formula: see text]4 array of Broadcom NUV-MT SiPMs, an average CTR of 223 ps (FWHM) was obtained. CONCLUSION: The implemented 16-channel HF electronics are fully functionall and have a negligible influence on the timing performance of the back-end electronics used, here the TOFPET2 ASIC. The ongoing integration of the picoTDC with the 16-channel HF board is expected to further set the path toward sub-100 ps TOF-PET and sub-30ps TOF resolution for single-photon detection.

2.
Phys Med Biol ; 68(16)2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37467766

RESUMEN

Objective.Recent SiPM developments and improved front-end electronics have opened new doors in TOF-PET with a focus on prompt photon detection. For instance, the relatively high Cherenkov yield of bismuth-germanate (BGO) upon 511 keV gamma interaction has triggered a lot of interest, especially for its use in total body positron emission tomography (PET) scanners due to the crystal's relatively low material and production costs. However, the electronic readout and timing optimization of the SiPMs still poses many questions. Lab experiments have shown the prospect of Cherenkov detection, with coincidence time resolutions (CTRs) of 200 ps FWHM achieved with small pixels, but lack system integration due to an unacceptable high power uptake of the used amplifiers.Approach.Following recent studies the most practical circuits with lower power uptake (<30 mW) have been implemented and the CTR performance with BGO of newly developed SiPMs from Fondazione Bruno Kessler tested. These novel SiPMs are optimized for highest single photon time resolution (SPTR).Main results.We achieved a best CTR FWHM of 123 ps for 2 × 2 × 3 mm3and 243 ps for 3 × 3 × 20 mm3BGO crystals. We further show that with these devices a CTR of 106 ps is possible using commercially available 3 × 3 × 20 mm3LYSO:Ce,Mg crystals. To give an insight in the timing properties of these SiPMs, we measured the SPTR with black coated PbF2of 2 × 2 × 3 mm3size. We confirmed an SPTR of 68 ps FWHM published in literature for standard devices and show that the optimized SiPMs can improve this value to 42 ps. Pushing the SiPM bias and using 1 × 1 mm2area devices we measured an SPTR of 28 ps FWHM.Significance.We have shown that advancements in readout electronics and SiPMs can lead to improved CTR with Cherenkov emitting crystals. Enabling time-of-flight with BGO will trigger a high interest for its use in low-cost and total-body PET scanners. Furthermore, owing to the prompt nature of Cherenkov emission, future CTR improvements are conceivable, for which a low-power electronic implementation is indispensable. In an extended discussion we will give a roadmap to best timing with prompt photons.


Asunto(s)
Fotones , Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones/métodos , Tiempo , Electrónica , Amplificadores Electrónicos , Conteo por Cintilación
3.
Heliyon ; 8(6): e09754, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35800729

RESUMEN

Despite the clinical acceptance of ToF-PET, there is still a gap between the technology's performance and the end-user's needs. Core to bridging this gap is the ability to develop radiation detectors combining a short attenuation length and a sub-nanosecond time response. Currently, the detector of choice, Lu2SiO5:Ce3+ single crystal, is not selected for its ability to answer the performance needs, but as a trade-off between requirements and availability. To bypass the current performance limitations, in particular restricted time response, the concept of the heterostructured detector has been proposed. The concept aims at splitting the scintillation mechanisms across two materials, one acting primarily as an absorber and one as an ultra-fast emitter. If the concept has attracted the interest of the medical and material communities, little has been shown in terms of the benefits/limitations of the approach. Based on Monte Carlo simulations, we present a survey of heterostructure performance versus detector design. The data allow for a clear understanding of the design/performance relationship. This, in turn, enables the establishment of design rules toward the development and optimization of heterostructured detectors that could supersede the current detector technology in the medical imaging field but also across multiple sectors (e.g. high-energy physics, security).

4.
IEEE Trans Radiat Plasma Med Sci ; 5(5): 630-637, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34485785

RESUMEN

Thallium bromide (TlBr) and thallium chloride (TlCl) are semiconductor materials with high transparency to visible light, high index of refraction, and high detection efficiency for gamma rays and annihilation photons. This manuscript reports on measurements of the light intensity and timing response of Cerenkov light emitted in one 3 mm × 3 mm × 5 mm slab of each of these materials operated in coincidence with a lutetium fine silicate (LFS) crystal with dimensions of 3 mm × 3 mm × 20 mm. A 22Na radioactive source was used. The measured average number of detected photons per event was 1.5 photons for TlBr and 2.8 photons for TlCl when these materials were coupled to a silicon photomultiplier. Simulation predicts these results with an overestimation of 12%. The best coincidence time resolution (CTR) for events in TlBr and TlCl were 329 ± 9 ps and 316 ± 9 ps, respectively, when events with 4 photons and >7 photons were selected. Simulation showed the CTR degraded from 120 ps to 405 ps in TlCl, and from 160 ps to 700 ps in TlBr when the first or second Cerenkov photon were selected. Results of this work show TlCl has a stronger Cerenkov light emission compared to TlBr and a greater potential to obtain the best timing measurements. Results also stress the importance of improving detection efficiency and transport of light to capture the first Cerenkov photon in timing measurements.

5.
Phys Med Biol ; 66(19)2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34433139

RESUMEN

Time of flight positron emission tomography can strongly benefit from a very accurate time estimator given by Cherenkov radiation, which is produced upon a 511 keV positron-electron annihilation gamma interaction in heavy inorganic scintillators. While time resolution in the order of 30 ps full width at half maximum (FWHM) has been reported using MCP-PMTs and black painted Cherenkov radiators, such solutions have several disadvantages, like high cost and low detection efficiency of nowadays available MCP-PMTs. On the other hand, silicon photomultipliers (SiPMs) are not limited by those obstacles and provide high photon detection efficiency with a decent time response. Timing performance of PbF2crystals of various lengths and surface conditions coupled to SiPMs was evaluated against a reference detector with an optimized test setup using high-frequency readout and novel time walk correction, with special attention on the intrinsic limits for one detected Cherenkov photon only. The average number of detected Cherenkov photons largely depends on the crystal surface state, resulting in a tradeoff between low photon time spread, thus good timing performance, and sensitivity. An intrinsic Cherenkov photon yield of 16.5 ± 3.3 was calculated for 2 × 2 × 3 mm3sized PbF2crystals upon 511 keVγ-deposition. After time walk correction based on the slew rate of the signal, assuming two identical detector arms in coincidence, and using all events, a time resolution of 215 ps FWHM (142 ps FWHM) was obtained for 2 × 2 × 20 mm3(2 × 2 × 3 mm3) sized PbF2crystals, compared to 261 ps (190 ps) without correction. Selecting on one detected photon only, a single photon coincidence time resolution of 113 ps FWHM for black painted and 166 ps for Teflon wrapped crystals was measured for 3 mm length, compared to 145 ps (black) and 263 ps (Teflon) for 20 mm length.

6.
Phys Med Biol ; 66(11)2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-33794510

RESUMEN

Inorganic scintillators are widely used for fast timing applications in high-energy physics (HEP) experiments, time-of-flight positron emission tomography and time tagging of soft and hard x-ray photons at advanced light sources. As the best coincidence time resolution (CTR) achievable is proportional to the square root of the scintillation decay time it is worth studying fast cross-luminescence, for example in BaF2which has an intrinsic yield of about 1400 photons/MeV. However, emission bands in BaF2are located in the deep-UV at 195 nm and 220 nm, which sets severe constraints on photodetector selection. Recent developments in dark matter and neutrinoless double beta decay searches have led to silicon photomultipliers (SiPMs) with photon detection efficiencies of 20%-25% at wavelengths of 200 nm. We tested state-of-the-art devices from Fondazione Bruno Kessler and measured a best CTR of 51 ± 5 ps full width at half maximum when coupling 2 mm × 2 mm × 3 mm BaF2crystals excited by 511 keV electron-positron annihilation gammas. Using these vacuum ultraviolet SiPMs we recorded the scintillation kinetics of samples from Epic Crystal under 511 keV excitation, confirming a fast decay time of 855 ps with 12.2% relative light yield and 805 ns with 84.0% abundance, together with a smaller rise time of 4 ps beyond the resolution of our setup. The total intrinsic light yield was determined to be 8500 photons/MeV. We also revealed a faster component with 136 ps decay time and 3.7% light yield contribution, which is extremely interesting for the fastest timing applications. Timing characteristics and CTR results on BaF2samples from different producers and with different dopants (yttrium, cadmium and lanthanum) are given, and clearly show that the the slow 800 ns emission can be effectively suppressed. Such results ultimately pave the way for high-rate ultrafast timing applications in medical diagnosis, range monitoring in proton or heavy ion therapy and HEP.


Asunto(s)
Luminiscencia , Conteo por Cintilación , Fotones , Tomografía de Emisión de Positrones , Vacio
7.
Sensors (Basel) ; 21(6)2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33799859

RESUMEN

The paper presents the simulation studies of 10 µµm pitch microstrips on a fully depleted monolithic active CMOS technology and describes their potential to provide a new and cost-effective solution for particle tracking and timing applications. The Fully Depleted Monolithic Active Microstrip Sensors (FD-MAMS) described in this work, which are developed within the framework of the ARCADIA project, are compliant with commercial CMOS fabrication processes. A set of Technology Computer-Aided Design (TCAD) parametric simulations was performed in the perspective of an upcoming engineering production run with the aim of designing FD-MAMS, studying their electrical characteristics, and optimizing the sensor layout for enhanced performance in terms of low capacitance, fast charge collection, and low-power operation. A fine pitch of 10 µµm was chosen to provide high spatial resolution. This small pitch still allows readout electronics to be monolithically integrated in the inter-strip regions, enabling the segmentation of long strips and the implementation of distributed readout architectures. The effects of surface radiation damage expected for total ionizing doses of the order of 10 to 105 krad were also modeled in the simulations. The results of the simulations exhibit promising performance in terms of timing and low power consumption and motivate R&D efforts to further develop FD-MAMS; the results will be experimentally verified through measurements on the test structures that will be available from mid-2021.

8.
Nanomaterials (Basel) ; 12(1)2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35009964

RESUMEN

Lead halide perovskite nanocrystals of the formula CsPbBr3 have recently been identified as potential time taggers in scintillating heterostructures for time-of-flight positron emission tomography (TOF-PET) imaging thanks to their ultrafast decay kinetics. This study investigates the potential of this material experimentally. We fabricated CsPbBr3 thin films on scintillating GGAG:Ce (Gd2.985Ce0.015Ga2.7Al2.3O12) wafer as a model structure for the future sampling detector geometry. We focused this study on the radioluminescence (RL) response of this composite material. We compare the results of two spin-coating methods, namely the static and the dynamic process, for the thin film preparation. We demonstrated enhanced RL intensity of both CsPbBr3 and GGAG:Ce scintillating constituents of a composite material. This synergic effect arises in both the RL spectra and decays, including decays in the short time window (50 ns). Consequently, this study confirms the applicability of CsPbBr3 nanocrystals as efficient time taggers for ultrafast timing applications, such as TOF-PET.

9.
EJNMMI Phys ; 7(1): 42, 2020 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-32562010

RESUMEN

INTRODUCTION: Time-of-flight (TOF) positron emission tomography (PET) scanners can provide significant benefits by improving the noise properties of reconstructed images. In order to achieve this, the timing response of the scanner needs to be modelled as part of the reconstruction process. This is currently achieved using Gaussian TOF kernels. However, the timing measurements do not necessarily follow a Gaussian distribution. In ultra-fast timing resolutions, the depth of interaction of the γ-photon and the photon travel spread (PTS) in the crystal volume become increasingly significant factors for the timing performance. The PTS of a single photon can be approximated better by a truncated exponential distribution. Therefore, we computed the corresponding TOF kernel as a modified Laplace distribution for long crystals. The obtained (CTR) kernels could be more appropriate to model the joint probability of the two in-coincidenceγ-photons. In this paper, we investigate the impact of using a CTR kernel vs. Gaussian kernels in TOF reconstruction using Monte Carlo generated data. MATERIALS AND METHODS: The geometry and physics of a PET scanner with two timing configurations, (a) idealised timing resolution, in which only the PTS contributed in the CTR, and (b) with a range of ultra-fast timings, were simulated. In order to assess the role of the crystal thickness, different crystal lengths were considered. The evaluation took place in terms of Kullback-Leibler (K-L) distance between the proposed model and the simulated timing response, contrast recovery (CRC) and spatial resolution. The reconstructions were performed using STIR image reconstruction toolbox. RESULTS: Results for the idealised scanner showed that the CTR kernel was in excellent agreement with the simulated time differences. In terms of K-L distance outperformed the a fitted normal distribution for all tested crystal sizes. In the case of the ultra-fast configurations, a convolution kernel between the CTR and a Gaussian showed the best agreement with the simulated data below 40 ps timing resolution. In terms of CRC, the CTR kernel demonstrated improvements, with values that ranged up to 3.8% better CRC for the thickest crystal. In terms of spatial resolution, evaluated at the 60th iteration, the use of CTR kernel showed a modest improvement of the peek-to-valley ratios up to 1% for the 10-mm crystal, while for larger crystals, a clear trend was not observed. In addition, we showed that edge artefacts can appear in the reconstructed images when the timing kernel used for the reconstruction is not carefully optimised. Further iterations, can help improve the edge artefacts.

10.
Appl Radiat Isot ; 141: 176-181, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29673719

RESUMEN

In previous work we investigated the real-time radioluminescence (RL) yield of Ge-doped silica fibres and Al2O3 nanodot media, sensing electron- and x-ray energies and intensities at values familiarly obtained in external beam radiotherapy. The observation of an appreciable low-dose sensitivity has given rise to the realisation that there is strong potential for use of RL dosimetry in diagnostic radiology. Herein use has been made of P-doped silica optical fibre, 2 mm diameter, also including a 271 µm cylindrical doped core. With developing needs for versatile x-ray imaging dosimetry, preliminary investigations have been made covering the range of diagnostic x-ray tube potentials 30 kVp to 120 kVp, demonstrating linearity of RL with kVp as well as in terms of the current-time (mAs) product. RL yields also accord with the inverse-square law. Given typical radiographic-examination exposure durations from tens- to a few hundred milliseconds, particular value is found in the ability to record the influence of x-ray generator performance on the growth and decay of beam intensity, from initiation to termination.


Asunto(s)
Exposición Profesional/análisis , Exposición a la Radiación/análisis , Dosimetría Termoluminiscente/métodos , Humanos , Exposición Profesional/efectos adversos , Fibras Ópticas , Exposición a la Radiación/efectos adversos , Radiografía/efectos adversos , Dióxido de Silicio , Dosimetría Termoluminiscente/instrumentación , Dosimetría Termoluminiscente/estadística & datos numéricos
11.
Rep Prog Phys ; 2017 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-29051393

RESUMEN

The evolution of particle detectors has always pushed the technological limit in order to provide enabling technologies to researchers in all fields of science. One archetypal example is the evolution of silicon detectors, from a system with a few channels 30 years ago, to the tens of millions of independent pixels currently used to track charged particles in all major particle physics experiments. Nowadays, silicon detectors are ubiquitous not only in research laboratories but in almost every high tech apparatus, from portable phones to hospitals. In this contribution, we present a new direction in the evolution of silicon detectors for charge particle tracking, namely the inclusion of very accurate timing information. This change in the present silicon detector paradigm is enabled by the inclusion of controlled, low gain in the detector response, therefore enhancing the detector output signal enough to make timing measurement possible. After providing a short overview of the advantage of this new technology, we present the necessary conditions that need to be met for the sensor and for the electronics in order to achieve 4-dimensional tracking. In the last section we present the experimental results, demonstrating the validity of our research path.

12.
J Med Imaging (Bellingham) ; 4(1): 011012, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28382312

RESUMEN

Maintaining excellent timing resolution in the generation of silicon photomultiplier (SiPM)-based time-of-flight positron emission tomography (TOF-PET) systems requires a large number of high-speed, high-bandwidth electronic channels and components. To minimize the cost and complexity of a system's back-end architecture and data acquisition, many analog signals are often multiplexed to fewer channels using techniques that encode timing, energy, and position information. With progress in the development SiPMs having lower dark noise, after pulsing, and cross talk along with higher photodetection efficiency, a coincidence timing resolution (CTR) well below 200 ps FWHM is now easily achievable in single pixel, bench-top setups using 20-mm length, lutetium-based inorganic scintillators. However, multiplexing the output of many SiPMs to a single channel will significantly degrade CTR without appropriate signal processing. We test the performance of a PET detector readout concept that multiplexes 16 SiPMs to two channels. One channel provides timing information with fast comparators, and the second channel encodes both position and energy information in a time-over-threshold-based pulse sequence. This multiplexing readout concept was constructed with discrete components to process signals from a [Formula: see text] array of SensL MicroFC-30035 SiPMs coupled to [Formula: see text] Lu1.8Gd0.2SiO5 (LGSO):Ce (0.025 mol. %) scintillators. This readout method yielded a calibrated, global energy resolution of 15.3% FWHM at 511 keV with a CTR of [Formula: see text] FWHM between the 16-pixel multiplexed detector array and a [Formula: see text] LGSO-SiPM reference detector. In summary, results indicate this multiplexing scheme is a scalable readout technique that provides excellent coincidence timing performance.

13.
J Med Imaging (Bellingham) ; 4(1): 011010, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28180132

RESUMEN

We compare the performance of two detector materials, cadmium telluride (CdTe) and bismuth silicon oxide (BSO), for optical property modulation-based radiation detection method for positron emission tomography (PET), which is a potential new direction to dramatically improve the annihilation photon pair coincidence time resolution. We have shown that the induced current flow in the detector crystal resulting from ionizing radiation determines the strength of optical modulation signal. A larger resistivity is favorable for reducing the dark current (noise) in the detector crystal, and thus the higher resistivity BSO crystal has a lower (50% lower on average) noise level than CdTe. The CdTe and BSO crystals can achieve the same sensitivity under laser diode illumination at the same crystal bias voltage condition while the BSO crystal is not as sensitive to 511-keV photons as the CdTe crystal under the same crystal bias voltage. The amplitude of the modulation signal induced by 511-keV photons in BSO crystal is around 30% of that induced in CdTe crystal under the same bias condition. In addition, we have found that the optical modulation strength increases linearly with crystal bias voltage before saturation. The modulation signal with CdTe tends to saturate at bias voltages higher than 1500 V due to its lower resistivity (thus larger dark current) while the modulation signal strength with BSO still increases after 3500 V. Further increasing the bias voltage for BSO could potentially further enhance the modulation strength and thus, the sensitivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA