Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39195386

RESUMEN

In the extreme space environment, spacecraft endure dramatic temperature variations that can impair their functionality. A VO2-based smart radiator device (SRD) offers an effective solution by adaptively adjusting its radiative properties. However, current research on VO2-based thermochromic films mainly focuses on optimizing the emissivity tunability (Δε) of single-cycle sandwich structures. Although multi-cycle structures have shown increased Δε compared to single-cycle sandwich structures, there have been few systematic studies to find the optimal cycle structure. This paper theoretically discusses the influence of material properties and cyclic structure on SRD performance using Finite-Difference Time-Domain (FDTD) software, which is a rigorous and powerful tool for modeling nano-scale optical devices. An optimal structural model with maximum emissivity tunability is proposed. The BaF2 obtained through optimization is used as the dielectric material to further optimize the cyclic resonator. The results indicate that the tunability of emissivity can reach as high as 0.7917 when the BaF2/VO2 structure is arranged in three periods. Furthermore, to ensure a longer lifespan for SRD under harsh space conditions, the effects of HfO2 and TiO2 protective layers on the optical performance of composite films are investigated. The results show that when TiO2 is used as the protective layer with a thickness of 0.1 µm, the maximum emissivity tunability reaches 0.7932. Finally, electric field analysis is conducted to prove that the physical mechanism of the smart radiator device is the combination of stacked Fabry-Perot resonance and multiple solar reflections. This work not only validates the effectiveness of the proposed structure in enhancing spacecraft thermal control performance but also provides theoretical guidance for the design and optimization of SRDs for space applications.

2.
Adv Sci (Weinh) ; 11(28): e2401295, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38769660

RESUMEN

Transformation optics (TO) provides a powerful tool to manipulate electromagnetic waves, enabling the design of invisibility cloaks, which can render objects invisible. Despite many years of research, however, invisibility cloaks experimentally realized thus far can only operate at a single frequency. The narrow bandwidth significantly restricts the practical applications of invisibility cloaks and other TO devices. Here, a general design strategy is proposed to realize a multiband anisotropic metamaterial characterized by two principal permittivity components, i.e., one infinite and the other spatially gradient. Through a proper transformation and combination of such metamaterials, an omnidirectional invisibility cloak is experimentally implemented, which is impedance-matched to free space at multiple frequencies. Both far-field numerical simulations and near-field experimental mappings confirm that this cloak can successfully suppress scattering from multiple large-scale objects simultaneously at 5 and 10 GHz. The design strategy and corresponding practical realization bring multiband transformation optical devices one step closer to reality.

3.
Nano Converg ; 10(1): 31, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37402935

RESUMEN

A tradeoff between light absorption and charge transport is a well-known issue in PbS colloidal quantum dot (CQD) solar cells because the carrier diffusion length in PbS CQD films is comparable to the thickness of CQD film. We reduce the tradeoff between light absorption and charge transport by combining a Fabry-Perot (FP) resonator and a distributed Bragg reflector (DBR). A FP resonance is formed between the DBR and a dielectric-metal-dielectric film as a top transparent electrode. A SiO2-TiO2 multilayer is used to form a DBR. The FP resonance enhances light absorption near the resonant wavelength of the DBR without changing the CQD film thickness. The light absorption near the FP resonance wavelength is further boosted by coupling the FP resonance with the high reflectivity of the Ag-coated DBR. When the FP resonance and DBR are combined, the power conversion efficiency (PCE) of PbS CQD solar cells increases by 54%. Moreover, the DBR assisted FP resonance enables a very thin PbS layer to absorb near infrared light four times more. The overall PCE of the thin PbS CQD solar cell increases by 24% without sacrificing the average visible transmittance (AVT). Our results show how to overcome the inherence problem of the CQD and develop a semi-transparent solar cell where the wavelength-selective absorption and the transparency for visible light are important.

4.
Discov Nano ; 18(1): 41, 2023 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-37382713

RESUMEN

Optical anisotropy of α-MoO3 in its reststrahlen (RS) bands provides exciting opportunities for constructing the polarization-dependent devices. However, achieving broadband anisotropic absorptions through the same α-MoO3 arrays is still challenging. In this study, we demonstrate that selective broadband absorption can be achieved by using the same α-MoO3 square pyramid arrays (SPAs). For both the x and y polarizations, the absorption responses of the α-MoO3 SPAs calculated by using the effective medium theory (EMT) agreed well with those of the FDTD, indicating the excellent selective broadband absorption of the α-MoO3 SPAs are associated with the resonant hyperbolic phonon polaritons (HPhPs) modes assisted by the anisotropic gradient antireflection (AR) effect of the structure. The near-field distribution of the absorption wavelengths of the α-MoO3 SPAs shows that the magnetic-field enhancement of the lager absorption wavelength tends to shift to the bottom of the α-MoO3 SPAs due to the lateral Fabry-Pérot (F-P) resonance, and the electric-field distribution exhibits the ray-like light propagation trails due to the resonance nature of the HPhPs modes. In addition, broadband absorption of the α-MoO3 SPAs can be maintained if the width of the bottom edge of the α-MoO3 pyramid is large than 0.8 µm, and excellent anisotropic absorption performances are almost immune to the variations of the thickness of the spacer and the height of the α-MoO3 pyramid.

5.
Materials (Basel) ; 16(11)2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37297322

RESUMEN

With the rapid advancements in aerospace technology and infrared detection technology, there are increasing needs for materials with simultaneous infrared camouflage and radiative cooling capabilities. In this study, a three-layered Ge/Ag/Si thin film structure on a titanium alloy TC4 substrate (a widely used skin material for spacecraft) is designed and optimized to achieve such spectral compatibility by combining the transfer matrix method and the genetic algorithm. The structure exhibits a low average emissivity of 0.11 in the atmospheric windows of 3-5 µm and 8-14 µm for infrared camouflage and a high average emissivity of 0.69 in 5-8 µm for radiative cooling. Furthermore, the designed metasurface shows a high degree of robustness regarding the polarization and incidence angle of the incoming electromagnetic wave. The underlying mechanisms allowing for the spectral compatibility of the metasurface can be elucidated as follows: the top Ge layer selectively transmits electromagnetic waves ranging from 5-8 µm while it reflects those in the ranges of 3-5 µm and 8-14 µm. The transmitted electromagnetic waves from the Ge layer are first absorbed by the Ag layer and then localized in the Fabry-Perot resonance cavity formed by Ag layer, Si layer and TC4 substrate. Ag and TC4 make further intrinsic absorptions during the multiple reflections of the localized electromagnetic waves.

6.
Adv Mater ; 35(7): e2209377, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36461881

RESUMEN

Inverse-vulcanized polymeric sulfur has received considerable attention for application in waste-based infrared (IR) polarizers with high polarization sensitivities, owing to its high transmittance in the IR region and thermal processability. However, there have been few reports on highly sensitive polymeric sulfur-based polarizers by replication of pre-simulated dimensions to achieve a high transmission of the transverse magnetic field (TTM ) and extinction ratio (ER). Herein, a 400-nanometer-pitch mid-wavelength infrared bilayer linear polarizer with self-aligned metal gratings is introduced on polymeric sulfur gratings integrated with a spacer layer (SM-polarizer). The dimensions of the SM-polarizer can be closely replicated using pre-simulated dimensions via a systematic investigation of thermal nanoimprinting conditions. Spacer thickness is tailored from 40 to 5100 nm by adjusting the concentration of polymeric sulfur solution during spin-coating. A tailored spacer thickness can maximize TTM in the broadband MWIR region by satisfying Fabry-Pérot resonance. The SM-polarizer yields TTM of 0.65, 0.59, and 0.43 and ER of 3.12 × 103 , 5.19 × 103 , and 5.81 × 103 at 4 µm for spacer thicknesses of 90, 338, and 572 nm, respectively. This demonstration of a highly sensitive and cost-effective SM-polarizer opens up exciting avenues for infrared polarimetric imaging and for applications in polarization manipulation.

7.
Nanomaterials (Basel) ; 12(16)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36014616

RESUMEN

A high absorption broadband absorber based on MXene and tungsten nanospheres in visible and near-infrared bands is proposed. The absorber has a maximum absorption of 100% and an average absorption of 95% in the wavelength range of 400-2500 nm. The theoretical mechanism and parameter adjustability of the absorber are analyzed by FDTD solutions. The results show that the structural parameters can effectively adjust the absorption performance. The good absorption performance is due to the action of the local surface plasmon resonance coupling with the gap surface plasmon resonance and Fabry-Perot resonance. The simulation results show that the absorber is insensitive to the polarization and oblique incidence angle of incident light, and that high absorption and broadband can be maintained when the oblique incidence angle is up to 60°.

8.
Nanomaterials (Basel) ; 12(16)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36014618

RESUMEN

We numerically investigated a dual-band metamaterial absorber based on the combination of plasmonic resonance and Fabry-Pérot (FP) resonance, which can achieve near-unity absorption for guided lasers. The absorber is constructed by a three-layer metal-insulator-metal (MIM) periodic configuration. In each unit cell, there is a gold-silicon cross on a thin silicon layer and a bottom nickel film. Numerical results show that, at normal incidence, the structure strongly absorbs light at wavelengths of 1.064 µm and 10.6 µm, with absorption rates higher than 94%. It is revealed that the two absorption peaks result from FP resonance in the thin silicon layer and plasmonic resonance in the cross, respectively. In addition, the absorber is polarization insensitive and is tolerant to the incident angle. The proposed combination of different resonances has the advantage of easily producing double absorption peaks with very large wavelength differences, and provides a new approach to the design of metamaterial absorbers.

9.
Ultrasonics ; 125: 106781, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35671568

RESUMEN

The concept of employing air volumes trapped inside polymer shells to make a lens for ultrasound focusing in water is investigated. The proposed lenses use evenly-spaced concentric rings, each having an air-filled polymer shell construction, defining concentric water-filled channels. Numerical simulations and experiments have shown that a plane wave can be focused, and that the amplification can be boosted by Fabry-Pérot resonances within the water channels with an appropriate choice of the lens thickness. The effect of the polymer shell thickness and the depth of the channels is discussed, as these factors can affect the geometry and hence the frequency of operation. The result was a lens with a Full Width at Half Maximum value of 0.65 of a wavelength at the focus. Results obtained on a metal-based counterpart are also shown for comparison. An advantage of this polymeric design is that it is easily constructed via additive manufacturing. This study shows that trapped-air lenses made of polymer are suitable for ultrasound focusing in water near 500 kHz.

10.
Materials (Basel) ; 15(11)2022 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-35683180

RESUMEN

Acoustic metamaterials based on Helmholtz resonance have perfect sound absorption characteristics with the subwavelength size, but the absorption bandwidth is narrow, which limits the practical applications for noise control with broadband. On the basis of the Fabry-Perot resonance principle, a novel sound absorber of the acoustic metamaterial by parallel connection of the multiple spiral chambers (abbreviated as MSC-AM) is proposed and investigated in this research. Through the theoretical modeling, finite element simulation, sample preparation and experimental validation, the effectiveness and practicability of the MSC-AM are verified. Actual sound absorption coefficients of the MSC-AM in the frequency range of 360-680 Hz (with the bandwidth Δf1 = 320 Hz) are larger than 0.8, which exhibit the extraordinarily low-frequency sound absorption performance. Moreover, actual sound absorption coefficients are above 0.5 in the 350-1600 Hz range (with a bandwidth Δf2 = 1250 Hz), which achieve broadband sound absorption in the low-middle frequency range. According to various actual demands, the structural parameters can be adjusted flexibly to realize the customization of sound absorption bandwidth, which provides a novel way to design and improve acoustic metamaterials to reduce the noise with various frequency bands and has promising prospects of application in low-frequency sound absorption.

11.
Materials (Basel) ; 15(4)2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35208063

RESUMEN

Metal nanoparticles supporting plasmons are widely used to enhance electromagnetic fields, resulting in strong light-matter interactions at the nanoscale in a diverse range of applications. Recently, it has been shown that when metal nanorods are periodically arranged with proper lattice periods, surface lattice resonances (SLRs) can be excited and near fields can be greatly enhanced over extended volumes. In this work, we report significant near field enhancement over even larger volumes by placing the metal nanorod array within a Fabry-Pérot (F-P) microcavity. Simulation results show that by taking advantage of strong coupling between the SLR and the photonic F-P resonances, the electric field intensity of the bonding split mode can be enhanced by up to 1935 times, which is about three times of the enhancement of the SLR, and the greatly enhanced field can extend over most of the F-P microcavity. We further show that the F-P resonances of both odd and even orders can strongly couple to the SLR by varying the nanorods position from the middle of the microcavity. We expect that the proposed plasmonic-photonic coupling system will find promising applications in nanolasers, nonlinear optics and sensing.

12.
Sensors (Basel) ; 21(20)2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34695950

RESUMEN

Components smaller than the wavelength of electromagnetic waves are called meta-atoms. Thermal emission can be controlled by an artificial structure in which these meta-atoms are arranged on the surface. This artificial structure is called a metasurface, and its optical properties are determined by the materials and shapes of the meta-atoms. However, optical devices may require active control of thermal emission. In the present study, we theoretically and numerically analyze a wavelength-selective emitter using a graphene ribbon metasurface. The graphene ribbon metasurface consists of a graphene ribbon array, potassium bromide thin film, and silver substrate. The geometric parameters of the graphene metasurface are determined based on an equivalent circuit model that agrees well with the results of the electromagnetic field analysis (rigorous coupled-wave analysis). The proposed emitter causes impedance matching depending on the conductivity of the graphene ribbon in a very narrow wavelength range. The conductivity of graphene can be actively controlled by the gate voltage. Therefore, the proposed emitters may realize near-perfect emission with a high quality factor and active controllable switching for various wavelengths. In addition, the quality factor can be changed by adjusting the electron mobility of graphene. The proposed emitter can be used for optical devices such as thermophotovoltaic systems and biosensing.

13.
Ultrasonics ; 95: 45-51, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30878706

RESUMEN

Traditional acoustic regulations in practice are used to have major obstacles in low frequency range, for which absorbers or suppressors have thicknesses that are comparable to their working wavelength. We present an acoustic structure-based "coiling-up space" to achieve outstanding sound regulation of acoustic waves in the extremely low frequency region. The structure is composed of an open waveguide and with a spiral throat tube and a cavity. The acoustic structure excites Helmholtz and Fabry-Pérot resonances in labyrinth cavity structures, coupling of an open waveguide, which produce Fano-like resonances respectively and a broadband low-transmission spectrum in the 120-3100 Hz range. During sound regulation, the existing open waveguide can also maintain natural ventilation through the structure. In addition, the sound transmission properties are shown to be sensitive to the structural parameters, which can be used to provide a tunable sound control method for acoustic devices.

14.
Nanoscale Res Lett ; 14(1): 46, 2019 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-30721359

RESUMEN

We propose and investigate a wide-angle and high-efficiency absorber by using the void plasmon (VP) effect in a Fabry-Perot (FP)-like system, which consists of a perforated metal film and a ground metal plane separated by a dielectric spacer. A hybrid FP/VP resonance mode contributes to the high absorption efficiency. Besides the increased absorption, greatly enhanced localized electric-field intensity at "hot spots" (~ 2284 times) can be achieved. In addition, by varying the thickness of the perforated metal layer and the environmental refractive index, the position of resonance peak can be easily controlled. The proposed absorber can also work as a sensor for detecting the surrounding dielectric constant with the maximum value of the figure of merit (FOM) achieving 3.16 in theory. This work creates an alternative design for high-efficiency absorption devices.

15.
Nanoscale Res Lett ; 13(1): 217, 2018 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-30030645

RESUMEN

We present a highly efficient structural color filtering approach for large-area application, using a nanoporous anodic alumina (NAA) film overlaid with an aluminum (Al) layer on top of an optically thick Al substrate. The NAA film, consisting of a self-assembled nanopore array in a hexagonal lattice, is equivalent to a quasi-homogeneous medium according to effective medium theory. The proposed structure enables strong absorption at resonance owing to the Fabry-Perot resonance supported by the metal-dielectric-metal configuration and the plasmonic effect mediated by the top nanoporous Al layer. The reflection colors can be readily tuned by altering the NAA thickness that is determined by anodization time, thereby allowing the flexible creation of complicated color images on a single platform. By fabricating three samples with different NAA thicknesses in a large area of 2 cm × 2 cm, it is confirmed that the proposed color filtering scheme exhibits highly enhanced color purity and high reflection efficiency of up to 73%, which is superior to that generated by previously reported NAA-based approaches. The presented strategy can pave the way for the efficient fabrication of large-area color filtering devices for various potential applications, including color display devices, imaging sensors, structural color printing, and photovoltaic cells.

16.
Ultrasonics ; 54(5): 1337-40, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24589257

RESUMEN

Bulk Poly(N-isopropylacrylamide) (PNIPAm) hydrogels are thermally responsive polymers that undergo a sharp volumetric phase transition around its lower critical solution temperature of 33 °C. The physical characteristics of bulk, micro-, and nano-form PNIPAm hydrogel have been well-studied, and have applications ranging from biomedical devices to mechanical actuators. An important physical characteristics which reveals lack of available information is speed of sound. Prior studies have utilized Brillouin scattering, multi-echo reflection ultrasound spectroscopy, the sing-around method, and others in measuring the speed of sound. We use a planar resonant cavity with bulk PNIPAm hydrogel in aqueous solution to determine the temperature dependent speed of sound around the lower critical solution temperature. The results show sharp nonmonotonic behavior of the sound velocity in vicinity of the phase transition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA