Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Cardiovasc Imaging ; 40(4): 801-809, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38376720

RESUMEN

Recently, a classification with four types of septal longitudinal strain patterns was described using echocardiography, suggesting a pathophysiological continuum of left bundle branch block (LBBB)-induced left ventricle (LV) remodeling. The aim of this study was to assess the feasibility of classifying these strain patterns using cardiovascular magnetic resonance (CMR), and to evaluate their association with LV remodeling and myocardial scar. Single center registry included LBBB patients with septal flash (SF) referred to CMR to assess the cause of LV systolic dysfunction. Semi-automated feature-tracking cardiac resonance (FT-CMR) was used to quantify myocardial strain and detect the four strain patterns. A total of 115 patients were studied (age 66 ± 11 years, 57% men, 28% with ischemic heart disease). In longitudinal strain analysis, 23 patients (20%) were classified in stage LBBB-1, 37 (32.1%) in LBBB-2, 25 (21.7%) in LBBB-3, and 30 (26%) in LBBB-4. Patients at higher stages had more prominent septal flash, higher LV volumes, lower LV ejection fraction, and lower absolute strain values (p < 0.05 for all). Late gadolinium enhancement (LGE) was found in 55% of the patients (n = 63). No differences were found between the strain patterns regarding the presence, distribution or location of LGE. Among patients with LBBB, there was a good association between strain patterns assessed by FT-CMR analysis and the degree of LV remodeling and LV dysfunction. This association seems to be independent from the presence and distribution of LGE.


Asunto(s)
Bloqueo de Rama , Estudios de Factibilidad , Imagen por Resonancia Cinemagnética , Valor Predictivo de las Pruebas , Sistema de Registros , Función Ventricular Izquierda , Remodelación Ventricular , Humanos , Masculino , Femenino , Bloqueo de Rama/fisiopatología , Bloqueo de Rama/diagnóstico por imagen , Anciano , Persona de Mediana Edad , Contracción Miocárdica , Disfunción Ventricular Izquierda/fisiopatología , Disfunción Ventricular Izquierda/diagnóstico por imagen , Volumen Sistólico , Reproducibilidad de los Resultados , Fenómenos Biomecánicos , Interpretación de Imagen Asistida por Computador , Fibrosis , Estudios Retrospectivos
2.
Front Cardiovasc Med ; 9: 842619, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35282338

RESUMEN

Background: Infarct size following ST-elevation myocardial infarction (STEMI) is an important determinate of left ventricular (LV) dysfunction and cardiovascular morbidity and mortality. Cardiac magnetic resonance feature tracking (CMR-FT) is a technique that allows for the assessment of myocardial function via quantification of longitudinal, radial, and circumferential strain. We investigated the association between CMR-FT-derived myocardial global strain and myocardial recovery. Methods: A prospective study on patients presenting with STEMI treated with primary percutaneous coronary intervention (PCI) was conducted. CMR imaging was obtained at two interval time points, the baseline within 2 weeks of hospital discharge and follow-up at 6 months. Strain analysis was performed via FT-CMR, and recovery was quantified by the area of late gadolinium enhancement (LGE). Results: A total of n = 14 patients met inclusion and exclusion criteria and were analyzed. There was a significant reduction in the infarct size, as measured by LGE mass percentage of the left ventricular muscle mass, between the initial and follow-up CMR (19.7%, IQR 12.2-23.9 vs. 17.1%, IQR 8.3-22.5, p = 0.04). Initial strain parameters were inversely correlated with the initial edema mass and the decrease in LGE mass between the initial and follow-up CMR. All LV global strains had high accuracy for the prediction of a reduction in LGE mass by 50% or more. Conclusions: LV global strains measured after primary PCI can predict the extent of myocardial recovery.

3.
Acad Radiol ; 29 Suppl 4: S40-S48, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-32712258

RESUMEN

RATIONALE AND OBJECTIVES: Acute myocarditis (AM) and hypertensive heart disease (HHD) have different pathophysiological backgrounds, thus potentially showing distinct patterns of altered myocardial deformation. Therefore, CMR left ventricular (LV) feature tracking (FT)- based strain parameters were indexed to myocardial mass index (LVMi) in order to evaluate potential additional value in the differentiation among AM, HHD, and healthy volunteers (HV) compared to non-indexed conventional strain. MATERIALS AND METHODS: Patients with AM (n = 43) and HHD (n = 28) underwent CMR at 3T. 61 HV served as controls. Cine imaging-based FT-strain analysis was performed and natural strain (nStrain) values were evaluated for gender and age specific differences in HV. Strain parameters were indexed to LVMi yielding ratio Strain (rStrain). These were evaluated for their discriminatory accuracy compared to nStrain values. RESULTS: There were significant differences in nStrain between genders (p < 0.05), but not between age groups in HV. Circumferential strains differentiated best between HV and AM, reaching an area under the curve (AUC) of 0.86 (female) and 0.81 (male), yielding 93 (72) % sensitivity and 55 (75) % specificity. In discriminating between HV and HHD as well as AM and HHD, longitudinal strains outperformed all other parameters with AUCs of 1.00 (female)/ 0.92 (male) and 0.90 (female)/ 0.74 (male), respectively. Sensitivity and specificity levels of 100 %/ 100 % (female) and 91 %/ 72 % (male) for HV versus AM as well as 82 %/ 71 % (female) and 91%/ 57 % (male) for AM versus HHD could be demonstrated. The usage of rStrains significantly increased the AUC for circumferential and radial strains in male patients. CONCLUSION: rStrain provided additional value in the differentiation of diseases with increased LVM. As rStrain is derived from standard native cine imaging, such parameters can be time efficiently and reliably calculated, giving them the potential to be a powerful addition to the currently developing multiparametric native diagnostic approaches.


Asunto(s)
Imagen por Resonancia Cinemagnética , Miocarditis , Femenino , Ventrículos Cardíacos , Humanos , Imagen por Resonancia Cinemagnética/métodos , Masculino , Miocarditis/patología , Miocardio , Valor Predictivo de las Pruebas , Sensibilidad y Especificidad , Función Ventricular Izquierda
4.
J Cardiovasc Magn Reson ; 23(1): 66, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-34078382

RESUMEN

BACKGROUND: The role of interventricular mechanics in pediatric pulmonary arterial hypertension (PAH) and its relation to right ventricular (RV) dysfunction has been largely overlooked. Here, we characterize the impact of maintained pressure overload in the RV-pulmonary artery (PA) axis on myocardial strain and left ventricular (LV) mechanics in pediatric PAH patients in comparison to a preclinical PA-banding (PAB) mouse model. We hypothesize that the PAB mouse model mimics important aspects of interventricular mechanics of pediatric PAH and may be beneficial as a surrogate model for some longitudinal and interventional studies not possible in children. METHODS: Balanced steady-state free precession (bSSFP) cardiovascular magnetic resonance (CMR) images of 18 PAH and 17 healthy (control) pediatric subjects were retrospectively analyzed using CMR feature-tracking (FT) software to compute measurements of myocardial strain. Furthermore, myocardial tagged-CMR images were also analyzed for each subject using harmonic phase flow analysis to derive LV torsion rate. Within 48 h of CMR, PAH patients underwent right heart catheterization (RHC) for measurement of PA/RV pressures, and to compute RV end-systolic elastance (RV_Ees, a measure of load-independent contractility). Surgical PAB was performed on mice to induce RV pressure overload and myocardial remodeling. bSSFP-CMR, tagged CMR, and intra-cardiac catheterization were performed on 12 PAB and 9 control mice (Sham) 7 weeks after surgery with identical post-processing as in the aforementioned patient studies. RV_Ees was assessed via the single beat method. RESULTS: LV torsion rate was significantly reduced under hypertensive conditions in both PAB mice (p = 0.004) and pediatric PAH patients (p < 0.001). This decrease in LV torsion rate correlated significantly with a decrease in RV_Ees in PAB (r = 0.91, p = 0.05) and PAH subjects (r = 0.51, p = 0.04). In order to compare combined metrics of LV torsion rate and strain parameters principal component analysis (PCA) was used. PCA revealed grouping of PAH patients with PAB mice and control subjects with Sham mice. Similar to LV torsion rate, LV global peak circumferential, radial, and longitudinal strain were significantly (p < 0.05) reduced under hypertensive conditions in both PAB mice and children with PAH. CONCLUSIONS: The PAB mouse model resembles PAH-associated myocardial mechanics and may provide a potential model to study mechanisms of RV/LV interdependency.


Asunto(s)
Hipertensión Arterial Pulmonar , Disfunción Ventricular Derecha , Animales , Niño , Ventrículos Cardíacos/diagnóstico por imagen , Humanos , Ratones , Valor Predictivo de las Pruebas , Arteria Pulmonar/diagnóstico por imagen , Arteria Pulmonar/cirugía , Estudios Retrospectivos , Disfunción Ventricular Derecha/diagnóstico por imagen , Disfunción Ventricular Derecha/etiología , Función Ventricular Derecha
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA