Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 336
Filtrar
1.
Clin Chim Acta ; 564: 119929, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39154700

RESUMEN

Irisin, a hormone-like adipo-myokine, has garnered considerable attention in recent years for its potential impact in metabolic diseases. Its physiological effects are similar to those of thyroid hormones, prompting numerous investigations into potential correlations and interactions between irisin and thyroid function through various in vitro and animal experiments. However, existing studies suggest that the relationship between irisin and thyroid diseases is highly complex and multifaceted. In this paper, we have summarized the research results on serum irisin and thyroid function, providing an overview of advancements and constraints in current research on irisin and thyroid hormones. The aim is to offer insights and directions for future clinical trials in this field.


Asunto(s)
Fibronectinas , Enfermedades de la Tiroides , Humanos , Fibronectinas/sangre , Fibronectinas/metabolismo , Enfermedades de la Tiroides/sangre , Enfermedades de la Tiroides/metabolismo , Animales , Hormonas Tiroideas/sangre , Hormonas Tiroideas/metabolismo
3.
Brain Res Bull ; 216: 111054, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39173777

RESUMEN

Intermittent hypoxia (IH) in patients with obstructive sleep apnea (OSA) syndrome elicited neuron injury (especially in the hippocampus and cortex), contributing to cognitive dysfunction. This study investigated the effects and clarified the mechanisms of ETS domain-containing protein Elk-4 (ELK4) on the cognitive function and neuroinflammation of mice with IH. Mouse microglia BV2 cells were induced with IH by exposure to fluctuating O2 concentrations (alternating from 5 % to 21 % every 30 min), and mice with OSA were developed and subjected to lentivirus-mediated gene intervention. ELK4 expression was significantly reduced in IH-induced microglia and brain tissues of mice with OSA. Overexpression of ELK4 attenuated oxidative stress, decreased the pro-inflammatory factors IL-1ß, IL-6, and TNF-α, and increased the level of the anti-inflammatory factors IL-10 and TGF-ß1, as well as the neuroprotective factor BDNF. ELK4 promoted the transcription of fibronectin type III domain-containing protein 5 (FNDC5) by binding to the promoter of FNDC5. Knockdown of FNDC5 in IH-induced microglia and animals reversed the protective effects of ELK4 on OSA-associated neuroinflammation and cognitive dysfunction. Overall, the results demonstrated that ELK4 overexpression repressed microglial activation by inducing the transcription of FNDC5, thus attenuating neuroinflammation and cognitive dysfunction induced by OSA.


Asunto(s)
Disfunción Cognitiva , Microglía , Enfermedades Neuroinflamatorias , Apnea Obstructiva del Sueño , Animales , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/etiología , Apnea Obstructiva del Sueño/metabolismo , Apnea Obstructiva del Sueño/complicaciones , Ratones , Enfermedades Neuroinflamatorias/metabolismo , Microglía/metabolismo , Masculino , Ratones Endogámicos C57BL , Estrés Oxidativo/fisiología , Estrés Oxidativo/efectos de los fármacos , Hipoxia/metabolismo , Hipoxia/complicaciones
4.
Brain Res ; 1845: 149192, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39214327

RESUMEN

Irisin is a glycosylated protein formed from the hydrolysis of fibronectin type III domain-containing protein 5 (FNDC5). Irisin is widely involved in the regulation of glucose and lipid metabolism. In addition, recent studies have demonstrated that Irisin can inhibit inflammation, restrain oxidative stress and have neuroprotective effects, which suggests that Irisin may have a good therapeutic effect on central nervous system diseases. Therefore, this review summarizes the role of Irisin in central nervous system diseases, including its signal pathways and possible mechanisms, etc. Irisin may be a potential candidate drug for the treatment of central nervous system diseases.

5.
In Vivo ; 38(5): 2126-2133, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39187335

RESUMEN

BACKGROUND/AIM: Cardiovascular diseases (CVD) are the leading cause of death worldwide. In 2019, 523 million people were diagnosed with CVD, with 18.6 million deaths. Improved treatment and diagnostics could reduce CVD's impact. Irisin (Ir) is crucial for heart function and may be a biomarker for heart attack. Ir is a glycoprotein with sugar residues attached to its protein structure. This glycosylation affects Ir stability, solubility, and receptor interactions on target cells. Its secondary structure includes a fibronectin type III domain, essential for its biological functions. Ir helps cardiomyocytes to respond to hypoxia and protects mitochondria. The aim of the study was to determine the FNDC5 gene expression level and the Ir level in HL-1 cardiomyocytes subjected to hypoxia. MATERIALS AND METHODS: We examined the effect of hypoxia on the expression levels of the FNDC5 gene and those of Ir in mouse cardiomyocytes of the HL-1 cell line. Real-time PCR (RT-PCR) was used to estimate the expression levels of the FNDC5 gene. Western blot and immunofluorescence methods were used to analyze the Ir protein levels. RESULTS: Analyses showed an increased Ir level in HL-1 cardiomyocytes in response to hypoxia. This is the first study to confirm the presence of Ir in HL-1 cells. CONCLUSION: The observed increase in Ir expression in murine cardiomyocytes is associated with the hypoxic environment and can be potentially used to diagnose hypoxia and CVD.


Asunto(s)
Hipoxia de la Célula , Fibronectinas , Miocitos Cardíacos , Miocitos Cardíacos/metabolismo , Fibronectinas/metabolismo , Fibronectinas/genética , Ratones , Animales , Línea Celular , Regulación de la Expresión Génica , Expresión Génica
6.
Biochem Pharmacol ; 229: 116476, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39128588

RESUMEN

Fibronectin type III domain-containing protein 5 (FNDC5) exerts potential anti-arrhythmic effects. However, the function and mechanism of FNDC5 in diabetes-associated atrial fibrillation (AF) remain unknown. In this study, bioinformatics analysis, in vivo and in vitro experiments were conducted to explore the alteration and role of FNDC5 in diabetes-related atrial remodeling and AF susceptibility. RNA sequencing data from atrial samples of permanent AF patients and diabetic mice exhibited significantly decreased FNDC5 at the transcriptional level, which was in line with the protein expression in diabetic mice as well as high glucose and palmitic acid (HG+PA) injured atrial myocytes. Diabetic mice exhibited adverse atrial remodeling and increased AF inducibility. Moreover, reduced atrial FNDC5 was accompanied with exacerbated NOD-like receptor pyrin domain containing 3 (NLRP3) activation and disturbed mitochondrial fission and fusion processes, as evidenced by decreased expressions of optic atrophy 1 (OPA-1), mitofusin (MFN-1, MFN-2) and increased phosphorylation of dynamin-related protein 1 (Ser616). These effects were validated in HG+PA-treated atrial myocytes. Critically, FNDC5 overexpression remarkably enhanced cellular antioxidant capacity by upregulating the expressions of superoxide dismutase (SOD1, SOD2) level. In addition, HG+PA-induced mitochondrial dysfunction was ameliorated by FNDC5 overexpression as evidenced by improved mitochondrial dynamics and membrane potential. Moreover, NLRP3 inflammasome-mediated inflammation was reduced by FNDC5 overexpression, and AMPK signaling might serve as the key down-stream effector. The present study demonstrated that reduced atrial FNDC5-AMPK signaling contributed to the pathogenesis of diabetes- associated AF by impairing mitochondrial dynamics and activating the NLRP3 inflammasome. These findings provide promising therapeutic avenues for diabetes-associated AF.

7.
Drug Des Devel Ther ; 18: 3005-3023, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050796

RESUMEN

Irisin is a muscle factor induced by exercise, generated through the proteolytic cleavage of the membrane protein fibronectin type III domain-containing protein 5 (FNDC-5). Numerous studies have shown that irisin plays a significant role in regulating glucose and lipid metabolism, inhibiting oxidative stress, reducing systemic inflammatory responses, and providing neuroprotection. Additionally, irisin can exert immunomodulatory functions by regulating regulatory T cells (Tregs). Tregs are a highly differentiated subset of mature T cells that play a key role in maintaining self-immune homeostasis and are closely related to infections, inflammation, immune-related diseases, and tumors. Irisin exerts persistent positive effects on Treg cell functions through various mechanisms, including regulating Treg cell differentiation and proliferation, improving their function, modulating the balance of immune cells, increasing the production of anti-inflammatory cytokines, and enhancing metabolic functions, thereby helping to maintain immune homeostasis and prevent immune-related diseases. As an important myokine, irisin interacts with receptors on the cell membrane, activating multiple intracellular signaling pathways to regulate cell metabolism, proliferation, and function. Although the specific receptor for irisin has not been fully identified, integrins are considered potential receptors. Irisin activates various signaling pathways, including AMPK, MAPK, and PI3K/Akt, through integrin receptors, thereby exerting multiple biological effects. These research findings provide important clues for understanding the mechanisms of irisin's action and theoretical basis for its potential applications in metabolic diseases and immunomodulation. This article reviews the relationship between irisin and Tregs, as well as the research progress of irisin in immune-related diseases such as multiple sclerosis, myasthenia gravis, acquired immune deficiency syndrome, type 1 diabetes, sepsis, and rheumatoid arthritis. Studies have revealed that irisin plays an important role in immune regulation by improving the function of Tregs, suggesting its potential application value in the treatment of immune-related diseases.


Asunto(s)
Fibronectinas , Linfocitos T Reguladores , Humanos , Fibronectinas/metabolismo , Fibronectinas/inmunología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Linfocitos T Reguladores/efectos de los fármacos , Animales , Enfermedades del Sistema Inmune/tratamiento farmacológico , Enfermedades del Sistema Inmune/inmunología , Enfermedades del Sistema Inmune/metabolismo
8.
Open Life Sci ; 19(1): 20220877, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38867923

RESUMEN

To elucidate the molecular genetic mechanisms underpinning feather color in Muscovy ducks. A cohort of 100 Muscovy ducks was meticulously selected for this research. Follicular tissues from ducks exhibiting black and white plumage served as the experimental samples. From these tissues, RNA and proteins were extracted for further analysis. The RNA underwent reverse transcription polymerase chain reaction amplification, followed by validation through western blot assays. The data revealed a significant upregulation in the expression of FN domain-containing protein 1 (FNDC1) and ADAMTS12 genes in Muscovy ducks with white plumage traits as opposed to those with black plumage traits. Specifically, individuals with pure white plumage demonstrated a markedly elevated expression of the FNDC1 gene in comparison to their pure black counterparts. Conversely, expression levels of the ADAMTS12 gene were found to be reduced in ducks with pure black plumage relative to those with pure white plumage. Notably, the expression patterns of FNDC1 and ADAMTS12 genes exhibited inconsistencies between mRNA and protein levels. This study offers significant insights into the molecular genetic mechanisms underlying feather color variation in Muscovy ducks. FNDC1 and ADAMTS12 could be considered potential targets for genetic manipulation or selective breeding strategies aimed at achieving specific feather color phenotypes in Muscovy ducks.

9.
Vet J ; 306: 106161, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38849027

RESUMEN

Irisin is a 112-amino acid peptide hormone that is cleaved from fibronectin type III domain-containing protein 5 (FNDC5), a type I transmembrane protein abundantly found in muscle tissue. Irisin is a putative mediator of the benefits of exercise, neuroprotection, bone growth, and cardiac health. However, few studies have focused on irisin in domestic animals. Further, whether processed irisin is detectable in domestic animal tissues remains uncertain. To address this, we determined FNDC5 mRNA and protein concentration in anatine (duck) and porcine (pig) skeletal muscle, and in equine (horse), swine, and anatine serum samples. RT-PCR analysis identified FNDC5 mRNA in all pig and duck skeletal muscle samples. An approximately 25 kDa band representing FNDC5 was detected in both pig and duck skeletal muscle. Fluorescence immunohistochemistry using a rabbit monoclonal FNDC5/irisin primary antibody and a goat polyclonal anti-rabbit secondary antibody localized FNDC5/irisin-like immunoreactivity in both the glandular and muscular regions of pig stomach. FNDC5/irisin-like immunoreactivity was also identified in horse, pig, and duck serum using a multispecies irisin ELISA. The average values of irisin-like immunoreactivity were 13.7 (duck), 15.4 (horse), and 7.0 (pig) ng/mL in samples tested. Our results support the presence of irisin precursor in several domestic animals. Processed irisin, however, was not detectable. Further studies are required to validate reliable tools to detect and quantify processed irisin in domestic animals.


Asunto(s)
Patos , Fibronectinas , Músculo Esquelético , ARN Mensajero , Animales , Caballos , Fibronectinas/metabolismo , Fibronectinas/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Porcinos , Músculo Esquelético/metabolismo , Músculo Esquelético/química , Patos/metabolismo
10.
J Transl Med ; 22(1): 507, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802851

RESUMEN

BACKGROUND: Gastric cancer (GC) ranks fifth in global cancer incidence and third in mortality rate among all cancer types. Circular RNAs (circRNAs) have been extensively demonstrated to regulate multiple malignant biological behaviors in GC. Emerging evidence suggests that several circRNAs derived from FNDC3B play pivotal roles in cancer. However, the role of circFNDC3B in GC remains elusive. METHODS: We initially screened circFNDC3B with translation potential via bioinformatics algorithm prediction. Subsequently, Sanger sequencing, qRT-PCR, RNase R, RNA-FISH and nuclear-cytoplasmic fractionation assays were explored to assess the identification and localization of circ0003692, a circRNA derived from FNDC3B. qRT-PCR and ISH were performed to quantify expression of circ0003692 in human GC tissues and adjacent normal tissues. The protein-encoding ability of circ0003692 was investigated through dual-luciferase reporter assay and LC/MS. The biological behavior of circ0003692 in GC was confirmed via in vivo and in vitro experiments. Additionally, Co-IP and rescue experiments were performed to elucidate the interaction between the encoded protein and c-Myc. RESULTS: We found that circ0003692 was significantly downregulated in GC tissues. Circ0003692 had the potential to encode a novel protein FNDC3B-267aa, which was downregulated in GC cells. We verified that FNDC3B-267aa, rather than circ0003692, inhibited GC migration in vitro and in vivo. Mechanistically, FNDC3B-267aa directly interacted with c-Myc and promoted proteasomal degradation of c-Myc, resulting in the downregulation of c-Myc-Snail/Slug axis. CONCLUSIONS: Our study revealed that the novel protein FNDC3B-267aa encoded by circ0003692 suppressed GC metastasis through binding to c-Myc and enhancing proteasome-mediated degradation of c-Myc. The study offers the potential applications of circ0003692 or FNDC3B-267aa as therapeutic targets for GC.


Asunto(s)
Fibronectinas , Metástasis de la Neoplasia , Complejo de la Endopetidasa Proteasomal , Proteínas Proto-Oncogénicas c-myc , ARN Circular , Neoplasias Gástricas , Neoplasias Gástricas/patología , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Humanos , ARN Circular/genética , ARN Circular/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Línea Celular Tumoral , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Animales , Fibronectinas/metabolismo , Regulación Neoplásica de la Expresión Génica , Masculino , Proteolisis , Ratones Desnudos , Secuencia de Bases , Movimiento Celular/genética , Femenino , Ratones
11.
Acta Physiol (Oxf) ; 240(7): e14163, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38752665

RESUMEN

AIM: To reveal the contribution of Irisin in the beneficial effects of resistance exercise on myocardial fibrosis (MF) and cardiac function in the mice with myocardial infarction (MI). METHODS: The MI model was built by ligating the left anterior descending coronary artery in Fndc5 knockout mice (Fndc5-/-). Resistance exercise was started one week after surgery and continued for four weeks. In addition, H2O2, AICAR, recombinant human Irisin protein (rhIRISIN), and Sirt1 shRNA lentivirus (LV-Sirt1 shRNA) were used to intervene primary isolated cardiac fibroblasts (CFs). MF was observed through Masson staining, and apoptosis was assessed using TUNEL staining. MDA and T-SOD contents were detected by biochemical kits. The expression of proteins and genes was detected by Western blotting and RT-qPCR. RESULTS: Resistance exercise increased Fndc5 mRNA level, inhibited the activation of TGFß1-TGFßR2-Smad2/3 pathway, activated AMPK-Sirt1 pathway, reduced the levels of oxidative stress, apoptosis, and MF in the infarcted heart, and promoted cardiac function. However, Fndc5 knockout attenuated the protective effects of resistance exercise on the MI heart. Results of the in vitro experiments showed that AICAR and rhIRISIN intervention activated the AMPK-Sirt1 pathway and inactivated the TGFß1-Smad2/3 pathway, and promoted apoptosis in H2O2-treated CFs. Notably, these effects of rhIRISIN intervention, except for the TGFßR2 expression, were attenuated by LV-Sirt1 shRNA. CONCLUSION: Resistance exercise upregulates Fndc5 expression, activates AMPK-Sirt1 pathway, inhibits the activation of TGFß1-Smad2/3 pathway, attenuates MF, and promotes cardiac function after MI.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Fibronectinas , Fibrosis , Ratones Noqueados , Infarto del Miocardio , Sirtuina 1 , Factor de Crecimiento Transformador beta1 , Animales , Infarto del Miocardio/metabolismo , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Sirtuina 1/metabolismo , Sirtuina 1/genética , Fibronectinas/metabolismo , Fibronectinas/genética , Ratones , Fibrosis/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Factor de Crecimiento Transformador beta1/metabolismo , Proteína Smad2/metabolismo , Regulación hacia Arriba , Entrenamiento de Fuerza , Masculino , Miocardio/metabolismo , Miocardio/patología , Proteína smad3/metabolismo , Proteína smad3/genética , Condicionamiento Físico Animal/fisiología , Ratones Endogámicos C57BL , Transducción de Señal
12.
Neuropharmacology ; 253: 109986, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38705569

RESUMEN

Stroke, the leading cause of disability and cognitive impairment, is also the second leading cause of death worldwide. The drugs with multi-targeted brain cytoprotective effects are increasingly being advocated for the treatment of stroke. Irisin, a newly discovered myokine produced by cleavage of fibronectin type III domain 5, has been shown to regulate glucose metabolism, mitochondrial energy, and fat browning. A large amount of evidence indicated that irisin could exert anti-inflammatory, anti-apoptotic, and antioxidant properties in a variety of diseases such as myocardial infarction, inflammatory bowel disease, lung injury, and kidney or liver disease. Studies have found that irisin is widely distributed in multiple brain regions and also plays an important regulatory role in the central nervous system. The most common cause of a stroke is a sudden blockage of an artery (ischemic stroke), and in some circumstances, a blood vessel rupture can also result in a stroke (hemorrhagic stroke). After a stroke, complicated pathophysiological processes lead to serious brain injury and neurological dysfunction. According to recent investigations, irisin may protect elements of the neurovascular unit by acting on multiple pathological processes in stroke. This review aims to outline the currently recognized effects of irisin on stroke and propose possible directions for future research.


Asunto(s)
Fibronectinas , Fármacos Neuroprotectores , Accidente Cerebrovascular , Fibronectinas/metabolismo , Humanos , Animales , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/farmacología , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/metabolismo , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos
13.
J Cell Physiol ; 239(6): e31267, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38558303

RESUMEN

Cervical cancer (CxCa) is the fourth most frequent cancer in women. This study aimed to determine the role and underlying mechanism of fibronectin type III domain-containing protein 5 (FNDC5) in inhibiting CxCa growth. Experiments were performed in human CxCa tissues, human CxCa cell lines (HeLa and SiHa), and xenograft mouse model established by subcutaneous injection of SiHa cells in nude mice. Bioinformatics analysis showed that CxCa patients with high FNDC5 levels have a longer overall survival period. FNDC5 expression was increased in human CxCa tissues, HeLa and SiHa cells. FNDC5 overexpression or FNDC5 protein not only inhibited proliferation, but also restrained invasion and migration of HeLa and SiHa cells. The effects of FNDC5 were prevented by inhibiting integrin with cilengitide, activating PI3K with recilisib or activating Akt with SC79. FNDC5 inhibited the phosphorylation of PI3K and Akt, which was attenuated by recilisib. PI3K inhibitor LY294002 showed similar effects to FNDC5 in HeLa and SiHa cells. Intravenous injection of FNDC5 (20 µg/day) for 14 days inhibited the tumor growth, and reduced the proliferation marker Ki67 expression and the Akt phosphorylation in the CxCa xenograft mouse model. These results indicate that FNDC5 inhibits the malignant phenotype of CxCa cells through restraining PI3K/Akt signaling. Upregulation of FNDC5 may play a beneficial role in retarding the tumor growth of CxCa.


Asunto(s)
Proliferación Celular , Fibronectinas , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Neoplasias del Cuello Uterino , Animales , Femenino , Humanos , Ratones , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Fibronectinas/metabolismo , Fibronectinas/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HeLa , Ratones Endogámicos BALB C , Ratones Desnudos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/tratamiento farmacológico , Ensayos Antitumor por Modelo de Xenoinjerto , Integrinas/metabolismo , Progresión de la Enfermedad
14.
Gen Comp Endocrinol ; 352: 114515, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38582177

RESUMEN

Irisin, a myokine identified in 2012, has garnered research interest for its capacity to induce browning of adipocytes and improve metabolic parameters. As such, the potential therapeutic applications of this exercise-induced peptide continue to be explored. Though present across diverse animal species, sequence analysis has revealed subtle variation in the irisin protein. In this review, we consider the effects of irisin on disease states in light of its molecular evolution. We summarize current evidence for irisin's influence on pathologies and discuss how sequence changes may inform development of irisin-based therapies. Furthermore, we propose that the phylogenetic variations in irisin could potentially be leveraged as a molecular clock to elucidate evolutionary relationships.


Asunto(s)
Adipocitos , Fibronectinas , Animales , Fibronectinas/genética , Filogenia , Adipocitos/metabolismo , Evolución Molecular
15.
Eur J Med Res ; 29(1): 221, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38581008

RESUMEN

BACKGROUND: Fibronectin type III domain containing 3B (FNDC3B), a member of the fibronectin type III domain-containing protein family, has been indicated in various malignancies. However, the precise role of FNDC3B in the progression of pancreatic cancer (PC) still remains to be elucidated. METHODS: In this study, we integrated data from the National Center for Biotechnology Information, the Cancer Genome Atlas, Genotype-Tissue Expression database, and Gene Expression Omnibus datasets to analyze FNDC3B expression and its association with various clinicopathological parameters. Subsequently, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes, along with Gene Set Enrichment Analysis (GSEA), single sample Gene Set Enrichment Analysis (ssGSEA) and estimate analysis were recruited to delve into the biological function and immune infiltration based on FNDC3B expression. Additionally, the prognostic estimation was conducted using Cox analysis and Kaplan-Meier analysis. Subsequently, a nomogram was constructed according to the result of Cox analysis to enhance the prognostic ability of FNDC3B. Finally, the preliminary biological function of FNDC3B in PC cells was explored. RESULTS: The study demonstrated a significantly higher expression of FNDC3B in tumor tissues compared to normal pancreatic tissues, and this expression was significantly associated with various clinicopathological parameters. GSEA revealed the involvement of FNDC3B in biological processes and signaling pathways related to integrin signaling pathway and cell adhesion. Additionally, ssGSEA analysis indicated a positive correlation between FNDC3B expression and infiltration of Th2 cells and neutrophils, while showing a negative correlation with plasmacytoid dendritic cells and Th17 cells infiltration. Kaplan-Meier analysis further supported that high FNDC3B expression in PC patients was linked to shorter overall survival, disease-specific survival, and progression-free interval. However, although univariate analysis demonstrated a significant correlation between FNDC3B expression and prognosis in PC patients, this association did not hold true in multivariate analysis. Finally, our findings highlight the crucial role of FNDC3B expression in regulating proliferation, migration, and invasion abilities of PC cells. CONCLUSION: Despite limitations, the findings of this study underscored the potential of FNDC3B as a prognostic biomarker and its pivotal role in driving the progression of PC, particularly in orchestrating immune responses.


Asunto(s)
Dominio de Fibronectina del Tipo III , Neoplasias Pancreáticas , Humanos , Células Dendríticas , Nomogramas , Neoplasias Pancreáticas/genética , Pronóstico
16.
Elife ; 122024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38661340

RESUMEN

Irisin, released from exercised muscle, has been shown to have beneficial effects on numerous tissues but its effects on bone are unclear. We found significant sex and genotype differences in bone from wildtype (WT) mice compared to mice lacking Fndc5 (knockout [KO]), with and without calcium deficiency. Despite their bone being indistinguishable from WT females, KO female mice were partially protected from osteocytic osteolysis and osteoclastic bone resorption when allowed to lactate or when placed on a low-calcium diet. Male KO mice have more but weaker bone compared to WT males, and when challenged with a low-calcium diet lost more bone than WT males. To begin to understand responsible molecular mechanisms, osteocyte transcriptomics was performed. Osteocytes from WT females had greater expression of genes associated with osteocytic osteolysis and osteoclastic bone resorption compared to WT males which had greater expression of genes associated with steroid and fatty acid metabolism. Few differences were observed between female KO and WT osteocytes, but with a low-calcium diet, the KO females had lower expression of genes responsible for osteocytic osteolysis and osteoclastic resorption than the WT females. Male KO osteocytes had lower expression of genes associated with steroid and fatty acid metabolism, but higher expression of genes associated with bone resorption compared to male WT. In conclusion, irisin plays a critical role in the development of the male but not the female skeleton and protects male but not female bone from calcium deficiency. We propose irisin ensures the survival of offspring by targeting the osteocyte to provide calcium in lactating females, a novel function for this myokine.


Asunto(s)
Fibronectinas , Ratones Noqueados , Osteocitos , Animales , Femenino , Osteocitos/metabolismo , Masculino , Ratones , Fibronectinas/metabolismo , Fibronectinas/genética , Factores Sexuales , Resorción Ósea/genética
17.
Transl Oncol ; 44: 101953, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38593585

RESUMEN

BACKGROUND: Fibronectin type III domain containing 1 (FNDC1) has been associated with the metastasis of many tumors, but its function in lung cancer remains uncertain. METHODS: FNDC1 expression was analyzed in The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx), evaluate its prognostic value. Gene Set Enrichment Analysis (GSEA) enrichment analysis of differential expression of FNDC1 in lung cancer. The expression of FNDC1 was detected in five types of lung cancer cells, and screened to establish FNDC1 stable knockdown cell strains. To observe the migration and invasion ability of lung cancer cells after FNDC1 knockdown. Finally, we used rhIL-6 to interfere with the stable knockdown of FNDC1 in A549 cells and observed the recovery of migration and invasion. RESULT: Our results showed that FNDC1 expression was increased in 21 tumor tissues, including lung cancer, and was associated with poor prognosis in five cancers, including lung adenocarcinoma (LUAD) (P < 0.05). GSEA enrichment analysis showed that FNDC1 was related to the pathways involved the JAK-STAT signaling pathway. Stable knockdown of FNDC1 in A549 and H292 cells resulted in decreased migration and invasion ability of both cells, accompanied by decreased expression of MMP-2 and Snail, and a significant decline in the expression of p-JAK2 and p-STAT3. The suppressive effect of FNDC1 knockdown on lung cancer cell metastasis counteracted by the JAK-STAT agonist rhIL-6 were presented in the nude mouse metastatic tumor model. CONCLUSION: FNDC1 is implicated in poor prognosis of a diverse range of malignant tumors, which can promote metastasis and invasion of lung cancer through the JAK2-STAT3 signaling pathway.

18.
Heliyon ; 10(8): e29090, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38638979

RESUMEN

As a passive motion and non-invasive treatment, theta-shaking exercise is considered an alternative to traditional active exercise for slowing down brain ageing. Here, we studied the influence of theta-shaking exercise on fibronectin type III domain containing 5/irisin (FNDC5/irisin) in the anterior nucleus of the thalamus, hippocampus, and medial prefrontal cortex (ATN-HPC-MPFC). Further, we assessed memory in senescence-accelerated prone mice (SAMP-10 mice) using a behavioural test to confirm the protective effect of theta-shaking exercise against age-related memory decline. SAMP-10 mice were subjected to theta-shaking exercise for 9-30 weeks. Mice then performed the T-maze test and passive avoidance task. Immunohistochemical analysis and ELISA were used to assess FNDC5/irisin, nerve growth factor (NGF), and neurotrophin 4/5 (NT4/5) expression in the ATN-HPC-MPFC. In the shaking group, FNDC5 was locally upregulated within the hippocampus and MPFC area rather than exhibiting even distribution throughout brain tissue. Irisin levels were generally higher in the control group. Meanwhile, hippocampal NGF levels were significantly higher in the shaking group, with no differences noted in neurotrophin levels. Theta-shaking preserved normal neurons in certain sub-regions. However, no beneficial changes in neuronal density were noted in the ATN. Theta-shaking exercise positively affects memory function in SAMP-10 mice. FNDC5 upregulation and higher levels of NGF, along with the potential involvement of irisin, may have contributed to the preservation of normal neuronal density in the hippocampus and MPFC subregions.

19.
J Orthop Surg Res ; 19(1): 205, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38555440

RESUMEN

BACKGROUND: Ferroptosis is known to play a crucial role in diabetic osteopathy. However, key genes and molecular mechanisms remain largely unclear. This study aimed to identify a crucial ferroptosis-related differentially expressed gene (FR-DEG) in diabetic osteopathy and investigate its potential mechanism. METHODS: We identified fibronectin type III domain-containing protein 5 (FNDC5)/irisin as an essential FR-DEG in diabetic osteopathy using the Ferroptosis Database (FerrDb) and GSE189112 dataset. Initially, a diabetic mouse model was induced by intraperitoneal injection of streptozotocin (STZ), followed by intraperitoneal injection of irisin. MC3T3-E1 cells treated with high glucose (HG) were used as an in vitro model. FNDC5 overexpression plasmid was used to explore underlying mechanisms in vitro experiments. Femurs were collected for micro-CT scan, histomorphometry, and immunohistochemical analysis. Peripheral serum was collected for ELISA analysis. Cell viability was assessed using a CCK-8 kit. The levels of glutathione (GSH), malondialdehyde (MDA), iron, reactive oxygen species (ROS), and lipid ROS were detected by the corresponding kits. Mitochondria ultrastructure was observed through transmission electron microscopy (TEM). Finally, mRNA and protein expressions were examined by quantitative real-time PCR (qRT-PCR) and western blot analysis. RESULTS: The expression of FNDC5 was found to be significantly decreased in both in vivo and in vitro models. Treatment with irisin significantly suppressed ferroptosis and improved bone loss. This was demonstrated by reduced lipid peroxidation and iron overload, increased antioxidant capability, as well as the inhibition of the ferroptosis pathway in bone tissues. Furthermore, in vitro studies demonstrated that FNDC5 overexpression significantly improved HG-induced ferroptosis and promoted osteogenesis. Mechanistic investigations revealed that FNDC5 overexpression mitigated ferroptosis in osteoblasts by inhibiting the eukaryotic initiation factor 2 alpha (eIF2α)/activated transcription factor 4 (ATF4)/C/EBP-homologous protein (CHOP) pathway. CONCLUSIONS: Collectively, our study uncovered the important role of FNDC5/irisin in regulating ferroptosis of diabetic osteopathy, which might be a potential therapeutic target.


Asunto(s)
Diabetes Mellitus Tipo 1 , Ferroptosis , Ratones , Animales , Fibronectinas/genética , Fibronectinas/metabolismo , Diabetes Mellitus Tipo 1/complicaciones , Especies Reactivas de Oxígeno , Factores de Transcripción
20.
Caspian J Intern Med ; 15(1): 66-75, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38463931

RESUMEN

Background: Late in pregnancy or soon after delivery, peripartum cardiomyopathy (PPCM) which is an uncommon type of cardiomyopathy, can develop. To assess the association between the level of irisin expression and (FNDC5) (rs3480) gene polymorphism with peripartum cardiomyopathy. Methods: This is a case control study included a thirty female patients with new-onset PPCM and sixty healthy females at the at the peripartum period in same time window for PPCM as a control. For each patient, comprehensive medical history was taken, full clinical assessment was done, ECHO., FNDC5 (rs3480) & Irisin assay. Results: The left ventricle end diastolic dimensions &left atrium diameters were statistically significant higher in patients' group than controls' group (P=0.000 for all), Also left ventricular ejection fraction (%) was statistically significant lower in patients than controls and as regards irisin, its Mean ±SD was lower in patient group than control group (8.44±1.1 vs 10.65±2.31) with (p <0.001) which is considered a significant difference statistically. Conclusion: Irisin level was lower in peripartum cardiomyopathic patients when compared with normal individuals and regarding its genotype, the homotype A/A was higher than homotype G/G.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA