Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Ann Anat ; 256: 152323, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39209048

RESUMEN

Fibroblast growth factors (FGFs) are required for the specification and formation of the epibranchial placodes, which give rise to the distal part of the cranial sensory ganglia. However, it remains unclear whether FGFs play a role in regulating the neurite outgrowth of the epibranchial placode-derived ganglia during further development. Previous studies have shown that Fibroblast growth factor 8 (FGF8) promotes neurite outgrowth from the statoacoustic ganglion in vitro. However, these studies did not distinguish between the neural crest- and placode-derived components of the sensory ganglia. In this study, we focused on the petrosal and nodose ganglia as representatives of the epibranchial ganglia and investigated their axonal outgrowth under the influence of FGF8 signaling protein in vitro. To precisely isolate the placode-derived ganglion part, we labeled the placode and its derivatives with enhanced green fluorescent protein (EGFP) through electroporation. The isolated ganglia were then collected for qRT-PCR assay and cultured in a collagen gel with and without FGF8 protein. Our findings revealed that both placode-derived petrosal and nodose ganglia expressed FGFR1 and FGFR2. In culture, FGF8 exerted a neural trophic effect on the axon outgrowth of both ganglia. While the expression levels of FGFR1/2 were similar between the two ganglia, the petrosal ganglion exhibited greater sensitivity to FGF8 compared to the nodose ganglion. This indicates that the placode-derived ganglia have differential responsiveness to FGF8 signaling during axonal extension. Thus, FGF8 is not only required for the early development of the epibranchial placode, as shown in previous studies, but also promotes neurite outgrowth of placode-derived ganglia.


Asunto(s)
Factor 8 de Crecimiento de Fibroblastos , Proyección Neuronal , Animales , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Proyección Neuronal/fisiología , Ganglio Nudoso/citología , Ganglio Nudoso/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Ratones , Neuritas/fisiología
2.
Cells ; 13(14)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39056803

RESUMEN

Adding 50% vitreous humor to the media surrounding lens explants induces fiber cell differentiation and a significant immune/inflammatory response. While Fgfr loss blocks differentiation in lens epithelial explants, this blockage is partially reversed by deleting Pten. To investigate the functions of the Fgfrs and Pten during lens fiber cell differentiation, we utilized a lens epithelial explant system and conducted RNA sequencing on vitreous humor-exposed explants lacking Fgfrs, or Pten or both Fgfrs and Pten. We found that Fgfr loss impairs both vitreous-induced differentiation and inflammation while the additional loss of Pten restores these responses. Furthermore, transcriptomic analysis suggested that PDGFR-signaling in FGFR-deficient explants is required to mediate the rescue of vitreous-induced fiber differentiation in explants lacking both Fgfrs and Pten. The blockage of ß-crystallin induction in explants lacking both Fgfrs and Pten in the presence of a PDGFR inhibitor supports this hypothesis. Our findings demonstrate that a wide array of genes associated with fiber cell differentiation are downstream of FGFR-signaling and that the vitreous-induced immune responses also depend on FGFR-signaling. Our data also demonstrate that many of the vitreous-induced gene-expression changes in Fgfr-deficient explants are rescued in explants lacking both Fgfrs and Pten.


Asunto(s)
Diferenciación Celular , Cristalino , Fosfohidrolasa PTEN , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/genética , Diferenciación Celular/genética , Animales , Cristalino/citología , Cristalino/metabolismo , Ratones , Transducción de Señal , Perfilación de la Expresión Génica , Transcriptoma/genética
3.
Mol Cell Biochem ; 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38581553

RESUMEN

Fibroblast growth factor 23 (FGF23) discovery has provided new insights into the regulation of Pi and Ca homeostasis. It is secreted by osteoblasts and osteocytes, and acts mainly in the kidney, parathyroid, heart, and bone. The aim of this review is to highlight the current knowledge on the factors modulating the synthesis of FGF23, the canonical and non-canonical signaling pathways of the hormone, the role of FGF23 in different pathophysiological conditions, and the anti-FGF23 therapy. This is a narrative review based on the search of PubMed database in the range of years 2000-2023 using the keywords local and systemic regulators of FGF23 synthesis, FGF23 receptors, canonical and non-canonical pathways, pathophysiological conditions and FGF23, and anti-FGF23 therapy, focusing the data on the molecular mechanisms. The regulation of FGF23 synthesis is complex and multifactorial. It is regulated by local factors and systemic regulators mainly involved in bone mineralization. The excessive FGF23 production is associated with different congenital diseases and with diseases occurring with a secondary high FGF23 production such as in chronic disease kidney and tumor-induced osteomalacia (TIO). The anti-FGF23 therapy appears to be useful to treat chromosome X-linked hypophosphatemia and TIO, but there are doubts about the handle of excessive FGF23 production in CKD. FGF23 biochemistry and pathophysiology are generating a plethora of knowledge to reduce FGF23 bioactivity at many levels that might be useful for future therapeutics of diseases associated with high-serum FGF23 levels.

4.
Int J Biol Macromol ; 254(Pt 1): 127657, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38287563

RESUMEN

Breast cancer remains a significant global health challenge, necessitating the development of effective targeted therapies. This study aimed to create bispecific targeting molecules against HER2 and FGFR1, two receptors known to play crucial roles in breast cancer progression. By combining the high-affinity Affibody ZHER2:2891 and a modified, stable form of fibroblast growth factor 2 (FGF2), we successfully generated bispecific proteins capable of simultaneously recognizing HER2 and FGFR1. Two variants were designed: AfHER2-sFGF2 with a shorter linker and AfHER2-lFGF2 with a longer linker between the HER2 and FGFR1-recognizing proteins. Both proteins exhibited selective binding to HER2 and FGFR1, with AfHER2-lFGF2 demonstrating simultaneous binding to both receptors. AfHER2-lFGF2 exhibited superior internalization compared to FGF2 in FGFR-positive cells and significantly increased internalization compared to AfHER2 in HER2-positive cells. To enhance their therapeutic potential, highly potent cytotoxic agent MMAE was conjugated to the targeting proteins, resulting in protein-drug conjugates. The bispecific AfHER2-lFGF2-vcMMAE conjugate demonstrated exceptional cytotoxic activity against HER2-positive, FGFR-positive, and dual-positive cancer cell lines that was significantly higher compared to monospecific conjugates. These data indicate the beneficial effect of simultaneous targeting of HER2 and FGFR1 in precise anticancer medicine and contribute valuable insights into the design and potential of bispecific targeting molecules for breast cancer treatment.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Humanos , Femenino , Factor 2 de Crecimiento de Fibroblastos , Receptor ErbB-2/metabolismo , Línea Celular Tumoral , Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico
5.
Biochem Pharmacol ; 218: 115853, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37832794

RESUMEN

Osteosarcoma is a malignant tumor with high metastatic potential, such that the overall 5-year survival rate of patients with metastatic osteosarcoma is only 20%. Therefore, it is necessary to unravel the mechanisms of osteosarcoma metastasis to identify predictors of metastasis by which to develop new therapies. Fibroblast growth factor 2 (FGF2) is a growth factor involved in embryonic development, cell migration, and proliferation. The overexpression of FGF2 and FGF receptors (FGFRs) has been shown to enhance cancer cell proliferation in lung, breast, gastric, and prostate cancers as well as melanoma. Nonetheless, the roles of FGF2 and FGFRs in human osteosarcoma cells remain unknown. In the present study, we found that FGF2 was overexpressed in human osteosarcoma sections and correlated with lung metastasis. Treatment of FGF2 induced migration activity, invasion activity, and intercellular adhesion molecule (ICAM)-1 expression in osteosarcoma cells. In particular, the downregulation or antagonism of FGFR1-4 suppressed FGF2-induced ICAM-1 expression and cancer cell migration. Furthermore, FGFR1, FGFR2, FGFR3, and FGFR4 were involved in FGF2-induced the phospholipase Cß/protein kinase Cα/proto-oncogene c-Src signaling pathway and triggered c-Jun nuclear translocation. Subsequent c-Jun upregulation of activator protein-1 transcription activity on the ICAM-1 promoter led to an increased migration of osteosarcoma cells. Moreover, the knockdown of endogenous FGF2 suppressed ICAM-1 expression and migration of osteosarcoma cells. These findings suggest that FGF2/FGFR1-4 signaling promotes metastasis via its direct downstream target gene ICAM-1, revealing a novel potential therapeutic target for osteosarcoma.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Humanos , Masculino , Neoplasias Óseas/genética , Factor 2 de Crecimiento de Fibroblastos/genética , Molécula 1 de Adhesión Intercelular , Osteosarcoma/genética , Osteosarcoma/patología , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Transducción de Señal
6.
Int J Mol Sci ; 24(12)2023 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-37373438

RESUMEN

Fibroblast growth factors (FGFs) have been widely studied by virtue of their ability to regulate many essential cellular activities, including proliferation, survival, migration, differentiation and metabolism. Recently, these molecules have emerged as the key components in forming the intricate connections within the nervous system. FGF and FGF receptor (FGFR) signaling pathways play important roles in axon guidance as axons navigate toward their synaptic targets. This review offers a current account of axonal navigation functions performed by FGFs, which operate as chemoattractants and/or chemorepellents in different circumstances. Meanwhile, detailed mechanisms behind the axon guidance process are elaborated, which are related to intracellular signaling integration and cytoskeleton dynamics.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Receptores de Factores de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Orientación del Axón , Transducción de Señal/fisiología , Axones/metabolismo
7.
Cells ; 12(7)2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-37048074

RESUMEN

Cancer is the leading cause of death worldwide; thus, it is necessary to find successful strategies. Several growth factors, such as vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF, FGF2), and transforming growth factor beta (TGF-ß), are involved in the main processes that fuel tumor growth, i.e., cell proliferation, angiogenesis, and metastasis, by activating important signaling pathways, including PLC-γ/PI3/Ca2+ signaling, leading to PKC activation. Here, we focused on bFGF, which, when secreted by tumor cells, mediates several signal transductions and plays an influential role in tumor cells and in the development of chemoresistance. The biological mechanism of bFGF is shown by its interaction with its four receptor subtypes: fibroblast growth factor receptor (FGFR) 1, FGFR2, FGFR3, and FGFR4. The bFGF-FGFR interaction stimulates tumor cell proliferation and invasion, resulting in an upregulation of pro-inflammatory and anti-apoptotic tumor cell proteins. Considering the involvement of the bFGF/FGFR axis in oncogenesis, preclinical and clinical studies have been conducted to develop new therapeutic strategies, alone and/or in combination, aimed at intervening on the bFGF/FGFR axis. Therefore, this review aimed to comprehensively examine the biological mechanisms underlying bFGF in the tumor microenvironment, the different anticancer therapies currently available that target the FGFRs, and the prognostic value of bFGF.


Asunto(s)
Factor 2 de Crecimiento de Fibroblastos , Neoplasias , Humanos , Factor A de Crecimiento Endotelial Vascular/uso terapéutico , Pronóstico , Neoplasias/tratamiento farmacológico , Transducción de Señal , Microambiente Tumoral
8.
J Biomol Struct Dyn ; 41(23): 14358-14371, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36898855

RESUMEN

Fibroblast growth factor receptors 1 (FGFR1) is an emerging target for the development of anticancer drugs. Uncontrolled expression of FGFR1 is strongly associated with a number of different types of cancers. Apart from a few FGFR inhibitors, the FGFR family members have not been thoroughly studied to produce clinically effective anticancer drugs. The application of proper computational techniques may aid in understanding the mechanism of protein-ligand complex formation, which may provide a better notion for developing potent FGFR1 inhibitors. In this study, a variety of computational techniques, including 3D-QSAR, flexible docking and MD simulation followed by MMGB/PBSA, H-bonds and distance analysis, have been performed to systematically explore the binding mechanism of pyrrolo-pyrimidine derivatives against FGFR1. The 3D-QSAR model was generated to deduce the structural determinants of FGFR1 inhibition. The high q2 and r2 values for the CoMFA and CoMSIA models indicated that the created 3D-QSAR models could reliably predict the bioactivities of FGFR1 inhibitors. The computed binding free energies (MMGB/PBSA) for the selected compounds were consistent with the ranking of their experimental binding affinities against FGFR1. Furthermore, per-residue energy decomposition analysis revealed that the residues Lys514 in catalytic region, Asn568, Glu571 in solvent accessible portion and Asp641 in DFG motif exhibited a strong tendency to mediate ligand-protein interactions through the hydrogen bonding and Van Der Waals interactions. These findings may benefit researchers in gaining better knowledge of FGFR1 inhibition and may serve as a guideline for the development of novel and highly effective FGFR1 inhibitors.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Antineoplásicos , Simulación de Dinámica Molecular , Simulación del Acoplamiento Molecular , Ligandos , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Antineoplásicos/farmacología , Relación Estructura-Actividad Cuantitativa
9.
Int J Mol Sci ; 24(3)2023 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-36768503

RESUMEN

A protease is an enzyme with a proteolytic activity that facilitates the digestion of its substrates. Membrane-type I matrix metalloproteinase (MT1-MMP), a member of the broader matrix metalloproteinases (MMP) family, is involved in the regulation of diverse cellular activities. MT1-MMP is a very well-known enzyme as an activator of pro-MMP-2 and two collagenases, MMP-8 and MMP-13, all of which are essential for cell migration. As an anchored membrane enzyme, MT1-MMP has the ability to interact with a diverse group of molecules, including proteins that are not part of the extracellular matrix (ECM). Therefore, MT1-MMP can regulate various cellular activities not only by changing the extra-cellular environment but also by regulating cell signaling. The presence of both intracellular and extra-cellular portions of MT1-MMP can allow it to interact with proteins on both sides of the cell membrane. Here, we reviewed the MT1-MMP substrates involved in disease pathogenesis.


Asunto(s)
Metaloproteinasa 14 de la Matriz , Metaloendopeptidasas , Colagenasas , Metaloproteinasas de la Matriz , Metaloproteinasas de la Matriz Asociadas a la Membrana , Metaloendopeptidasas/metabolismo , Proteínas , Especificidad por Sustrato
10.
Anim Biotechnol ; 34(4): 1196-1208, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34939903

RESUMEN

Fibroblast growth factor 1(FGF1) has been proved to bind to specific signal molecules and activate intracellular signal transduction, leading to proliferation or differentiation of cells. However, the role of FGF1 in goat adipocytes is still unclear. Here, we investigated its role in lipogenesis of goats, which depends on the activation of FGFRs. In goat intramuscular and subcutaneous adipocytes, we observed that adipocytes accumulation was inhibited by interfering of FGF1, the expression of C/EBPα, C/EBPß, LPL, Pref-1, PPARγ, AP2, KLF4, KLF6, KLF10 and KLF17 were significantly down-regulated (p < 0.05). When the FGF1 was up-regulated, the opposite result was found, while the expression of C/EBPß, LPL, PPARγ, SREBP1, AP2, KLF4, KLF7, KLF15, KLF16 and KLF17 were increased significantly (p < 0.05) in goat intramuscular and subcutaneous adipocytes. The expression level of FGFR1 was significantly and decreased with the interference of FGF1, and increased with the overexpression of FGF1. But in goat subcutaneous adipocytes, only the expression of FGFR2 was consistent with the expression of FGF1. Interference methods confirmed that FGFR1 or FGFR2 and FGF1 have the similarly promoting function in adipocytes differentiation. With the co-transfection technology, we confirmed that FGF1 promoted the differentiation of intramuscular and subcutaneous adipocytes might via FGFR1 or FGFR2, respectively.


Asunto(s)
Factor 1 de Crecimiento de Fibroblastos , Cabras , Animales , Factor 1 de Crecimiento de Fibroblastos/genética , Factor 1 de Crecimiento de Fibroblastos/metabolismo , Cabras/fisiología , PPAR gamma/metabolismo , Diferenciación Celular/fisiología , Adipocitos/fisiología
11.
Future Med Chem ; 14(24): 1923-1941, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36449352

RESUMEN

The FGF receptors (FGFRs) belong to a family of receptor tyrosine kinases. Abundant evidence shows that FGFRs are closely related to tumor cell invasion and angiogenesis. Hence, targeted modulation of FGFRs has become an effective strategy for cancer treatment. Recently, the development of small-molecule inhibitors targeting FGFRs has been extensively studied, and three inhibitors have been approved for marketing. Based on the clinical problems with the current inhibitors, there is a need to develop novel inhibitors and technologies to address the pitfalls. This review summarizes recent advances in small-molecule inhibitors targeting FGFRs, focusing on structure-activity relationships. Moreover, recent progress of novel technologies are summarized to provide a reference for promoting the application of drugs targeting FGFRs in tumor therapy.


Asunto(s)
Proteínas Tirosina Quinasas Receptoras , Receptores de Factores de Crecimiento de Fibroblastos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Relación Estructura-Actividad
12.
Front Pharmacol ; 13: 998199, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36210834

RESUMEN

Gastric cancer (GC) is one of the most malignant cancers and is estimated to be fifth in incidence ratio and the third leading cause of cancer death worldwide. Despite advances in GC treatment, poor prognosis and low survival rate necessitate the development of novel treatment options. Fibroblast growth factor receptors (FGFRs) have been suggested to be potential targets for GC treatment. In this study, we report a novel selective FGFR inhibitor, RK-019, with a pyrido [1, 2-a] pyrimidinone skeleton. In vitro, RK-019 showed excellent FGFR1-4 inhibitory activities and strong anti-proliferative effects against FGFR2-amplification (FGFR2-amp) GC cells, including SNU-16 and KATO III cells. Treatment with RK-019 suppressed phosphorylation of FGFR and its downstream pathway proteins, such as FRS2, PLCγ, AKT, and Erk, resulting in cell cycle arrest and induction of apoptosis. Furthermore, daily oral administration of RK-019 could attenuate tumor xenograft growth with no adverse effects. Here, we reported a novel specific FGFR inhibitor, RK-019, with potent anti-FGFR2-amp GC activity both in vitro and in vivo.

13.
Front Oncol ; 12: 936952, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36147913

RESUMEN

Background: Fibroblast growth factor receptors (FGFRs) modulate numerous cellular processes in tumor cells and tumor microenvironment. However, the effect of FGFRs on tumor prognosis and tumor-infiltrating lymphocytes in gastric cancer (GC) remains controversial. Methods: The expression of four different types of FGFRs was analyzed via GEPIA, TCGA-STAD, and GTEX databases and our 27 pairs of GC tumor samples and the adjacent normal tissue. Furthermore, the Kaplan-Meier plot and the TCGA database were utilized to assess the association of FGFRs with clinical prognosis. The R software was used to evaluate FGFRs co-expression genes with GO/KEGG Pathway Enrichment Analysis. In vitro and in vivo functional analyses and immunoblotting were performed to verify FGFR4 overexpression consequence. Moreover, the correlation between FGFRs and cancer immune infiltrates was analyzed by TIMER and TCGA databases. And the efficacy of anti-PD-1 mAb treatment was examined in NOG mouse models with overexpressed FGFR1 or FGFR4. Results: The expression of FGFRs was considerably elevated in STAD than in the normal gastric tissues and was significantly correlated with poor OS and PFS. ROC curve showed the accuracy of the FGFRs in tumor diagnosis, among which FGFR4 had the highest ROC value. Besides, univariate and multivariate analysis revealed that FGFR4 was an independent prognostic factor for GC patients. According to a GO/KEGG analysis, the FGFRs were implicated in the ERK/MAPK, PI3K-AKT and extracellular matrix (ECM) receptor signaling pathways. In vivo and in vitro studies revealed that overexpression of FGFR4 stimulated GC cell proliferation, invasion, and migration. In addition, FGFR1 expression was positively correlated with infiltrating levels of CD8+ T-cells, CD4+ T-cells, macrophages, and dendritic cells in STAD. In contrast, FGFR4 expression was negatively correlated with tumor-infiltrating lymphocytes. Interestingly, overexpression of FGFR1 in the NOG mouse model improved the immunotherapeutic impact of GC, while overexpression of FGFR4 impaired the effect. When combined with an FGFR4 inhibitor, the anti-tumor effect of anti-PD-1 treatment increased significantly in a GC xenograft mouse model with overexpressed FGFR4. Conclusions: FGFRs has critical function in GC and associated with immune cell infiltration, which might be a potential prognosis biomarker and predictor of response to immunotherapy in GC.

14.
Bioorg Chem ; 127: 105965, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35759882

RESUMEN

Gastric cancer is the second most lethal cancer across the world. With the progress in therapeutic approaches, the 5-year survival rate of early gastric cancer can reach > 95%. However, the prognosis and survival time of advanced gastric cancer is still somber. Therefore, more effective targeted therapies for gastric cancer treatment are urgently needed. FGFR, VEGFR and other receptor tyrosine kinases have recently been suggested as potential targets for gastric cancer treatment. We herein report the discovery of pyrrolo[2,3-d]pyrimidin/pyrazolo[3,4-d]pyrimidin-4-amine derivatives as a new class of FGFRs-dominant multi-target receptor tyrosine kinase inhibitors. SAR assessment identified the most active compounds 8f and 8k, which showed excellent inhibitory activity against a variety of receptor tyrosine kinases. Moreover, 8f and 8k displayed excellent potency in the SNU-16 gastric cancer cell line. Furthermore, 8f and 8k could inhibit FGFR1 phosphorylation and downstream signaling pathways as well as induce cell apoptosis. In vivo, 8f and 8k suppress tumor growth in the SNU-16 xenograft model without inducing obvious toxicity. These findings raise the possibility that compounds 8f and 8k might serve as potential agents for the treatment of gastric cancer.


Asunto(s)
Antineoplásicos , Neoplasias Gástricas , Aminas/farmacología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular , Humanos , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Tirosina Quinasas Receptoras , Neoplasias Gástricas/tratamiento farmacológico , Relación Estructura-Actividad , Tirosina/farmacología
15.
Int J Biol Macromol ; 201: 47-58, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34998873

RESUMEN

Heparosan, with a linear chain of disaccharide repeating units of â†’ 4) ß-D-glucuronic acid (GlcA) (1 â†’ 4)-α-D-N-acetylglucosamine (GlcNAc) (1→, is a potential starting chemical for heparin synthesis. However, the chemoenzymatic synthesis of single-site sulfated heparosan and its antitumor activity have not been studied. In this study, 2-deacetyl-3-O-sulfo-heparosan (DSH) was prepared successively by the N-deacetylation chemical reaction and enzymatic modification of human 3-O-sulfotransferase-1 (3-OST-1). Structural characterization of DSH was shown the success of the sulfation with the sulfation degree of 0.87. High performance gel permeation chromatography (HPGPC) analysis revealed that DSH had only one symmetrical sharp peak with a molecular weight of 9.6334 × 104 Da. Biological function studies showed that DSH could inhibit tumor cell (A549, HepG2 and HCT116) viability and induce the apoptosis of A549 cells. Further in vitro mechanistic studies showed that DSH may induce apoptosis via the JNK signaling pathway, and the upstream signal of this process may be fibroblast growth factor receptors. These results indicated that DSH could be developed as one of a potential chemical for tumor treatment.


Asunto(s)
Disacáridos , Receptores de Factores de Crecimiento de Fibroblastos , Células A549 , Disacáridos/química , Disacáridos/metabolismo , Humanos , Peso Molecular , Sulfotransferasas/química , Sulfotransferasas/metabolismo
16.
Int J Mol Sci ; 22(12)2021 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-34198477

RESUMEN

Receptor tyrosine kinases (RTKs) are membrane receptors that regulate many fundamental cellular processes. A tight regulation of RTK signaling is fundamental for development and survival, and an altered signaling by RTKs can cause cancer. RTKs are localized at the plasma membrane (PM) and the major regulatory mechanism of signaling of RTKs is their endocytosis and degradation. In fact, RTKs at the cell surface bind ligands with their extracellular domain, become active, and are rapidly internalized where the temporal extent of signaling, attenuation, and downregulation are modulated. However, other mechanisms of signal attenuation and termination are known. Indeed, inhibition of RTKs' activity may occur through the modulation of the phosphorylation state of RTKs and the interaction with specific proteins, whereas antagonist ligands can inhibit the biological responses mediated by the receptor. Another mechanism concerns the expression of endogenous inactive receptor variants that are deficient in RTK activity and take part to inactive heterodimers or hetero-oligomers. The downregulation of RTK signals is fundamental for several cellular functions and the homeostasis of the cell. Here, we will review the mechanisms of signal attenuation and termination of RTKs, focusing on FGFRs.


Asunto(s)
Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal , Animales , Regulación hacia Abajo , Humanos , Lisosomas/metabolismo , Mutación/genética , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Proteínas Tirosina Quinasas Receptoras/genética , Ubiquitinación
17.
Cells ; 10(5)2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-34068954

RESUMEN

Increasing evidence indicates that success of targeted therapies in the treatment of cancer is context-dependent and is influenced by a complex crosstalk between signaling pathways and between cell types in the tumor. The Fibroblast Growth Factor (FGF)/FGF receptor (FGFR) signaling axis highlights the importance of such context-dependent signaling in cancer. Aberrant FGFR signaling has been characterized in almost all cancer types, most commonly non-small cell lung cancer (NSCLC), breast cancer, glioblastoma, prostate cancer and gastrointestinal cancer. This occurs primarily through amplification and over-expression of FGFR1 and FGFR2 resulting in ligand-independent activation. Mutations and translocations of FGFR1-4 are also identified in cancer. Canonical FGF-FGFR signaling is tightly regulated by ligand-receptor combinations as well as direct interactions with the FGFR coreceptors heparan sulfate proteoglycans (HSPGs) and Klotho. Noncanonical FGFR signaling partners have been implicated in differential regulation of FGFR signaling. FGFR directly interacts with cell adhesion molecules (CAMs) and extracellular matrix (ECM) proteins, contributing to invasive and migratory properties of cancer cells, whereas interactions with other receptor tyrosine kinases (RTKs) regulate angiogenic, resistance to therapy, and metastatic potential of cancer cells. The diversity in FGFR signaling partners supports a role for FGFR signaling in cancer, independent of genetic aberration.


Asunto(s)
Carcinogénesis , Neoplasias/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Humanos
18.
J Cell Mol Med ; 25(8): 4166-4172, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33609078

RESUMEN

Signalling of the epithelial splicing variant of fibroblast growth factor receptor 2 (FGFR2b) triggers both differentiation and autophagy, while the aberrant expression of the mesenchymal FGFR2c isoform in epithelial cells induces impaired differentiation, inhibition of autophagy as well as the induction of the epithelial-mesenchymal transition (EMT). In light of the widely proposed negative loop linking autophagy and EMT in the early steps of carcinogenesis, here we investigated the possible involvement of FGFR2c aberrant expression and signalling in orchestrating this crosstalk in human keratinocytes. Biochemical, molecular, quantitative immunofluorescence analysis and in vitro invasion assays, coupled to the use of specific substrate inhibitors and transient or stable silencing approaches, showed that AKT/MTOR and PKCε are the two hub signalling pathways, downstream FGFR2c, intersecting with each other in the control of both the inhibition of autophagy and the induction of EMT and invasive behaviour. These results indicate that the expression of FGFR2c, possibly resulting from FGFR2 isoform switch, could represent a key upstream event responsible for the establishment of a negative interplay between autophagy and EMT, which contributes to the assessment of a pathological oncogenic profile in epithelial cells.


Asunto(s)
Autofagia , Diferenciación Celular , Células Epiteliales/patología , Transición Epitelial-Mesenquimal , Queratinocitos/patología , Mesodermo/patología , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Apoptosis , Proliferación Celular , Células Cultivadas , Células Epiteliales/metabolismo , Humanos , Queratinocitos/metabolismo , Mesodermo/metabolismo , Isoformas de Proteínas , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Transducción de Señal
19.
Cancers (Basel) ; 12(12)2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33352931

RESUMEN

Despite pharmacological treatments and surgical practice options, the mortality rate of astrocytomas and glioblastomas remains high, thus representing a medical emergency for which it is necessary to find new therapeutic strategies. Fibroblast growth factors (FGFs) act through their associated receptors (FGFRs), a family of tyrosine kinase receptors consisting of four members (FGFR1-4), regulators of tissue development and repair. In particular, FGFRs play an important role in cell proliferation, survival, and migration, as well as angiogenesis, thus their gene alteration is certainly related to the development of the most common diseases, including cancer. FGFRs are subjected to multiple somatic aberrations such as chromosomal amplification of FGFR1; mutations and multiple dysregulations of FGFR2; and mutations, translocations, and significant amplifications of FGFR3 and FGFR4 that correlate to oncogenesis process. Therefore, the in-depth study of these receptor systems could help to understand the etiology of both astrocytoma and glioblastoma so as to achieve notable advances in more effective target therapies. Furthermore, the discovery of FGFR inhibitors revealed how these biological compounds improve the neoplastic condition by demonstrating efficacy and safety. On this basis, this review focuses on the role and involvement of FGFRs in brain tumors such as astrocytoma and glioblastoma.

20.
Ann Transl Med ; 8(20): 1290, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33209870

RESUMEN

BACKGROUND: The prevalence and types of fibroblast growth factor receptor (FGFR) mutations vary significantly among different ethnic groups. The optimal application of FGFR inhibitors depends on these variations being comprehensively understood. However, such an analysis has yet to be conducted in Chinese patients. METHODS: We retrospectively screened the genomic profiling results of 10,582 Chinese cancer patients across 16 cancer types to investigate the frequency and distribution of FGFR aberrations. RESULTS: FGFR aberrations were identified in 745 patients, equating to an overall prevalence of 7.0%. A majority of the aberrations occurred on FGFR1 (56.8%), which was followed by FGFR3 (17.7%), FGFR2 (14.4%), and FGFR4 (2.8%). Further, 8.5% of patients had aberrations of more than 1 FGFR gene. The most common types of aberrations were amplification (53.7%), other mutations (38.8%), and fusions (5.6%). FGFR fusion and amplification occurred concurrently in 1.9% of the patients. FGFR aberrations were detected in 12 of the 16 cancers, with the highest prevalence belonging to colorectal cancer (CRC) (31%). Other FGFR-aberrant cancer types included stomach (16.8%), breast (14.3%), and esophageal (12.7%) cancer. Breast tumors were also more likely than other cancer types to have concurrent FGFR rearrangements and amplifications (P<0.001). In comparison with the public dataset, our cohort had a significantly higher number of FGFR aberrations in colorectal (P<0.001) and breast cancer (P=0.05). CONCLUSIONS: Among the Chinese cancer patients in our study, the overall prevalence of FGFR aberrations was 7.0%. FGFR1 amplification was the most common genetic alteration in CRC, breast cancer, and lung cancer; while FGFR2 amplification was more commonly observed in gastric cancer than in other cancers in our cohort. Our study advances the understanding of the distribution of FGFR aberrations in various cancer types in the Chinese population, which will facilitate the further development of FGFR inhibitors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA