Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Matrix Biol Plus ; 16: 100121, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36160687

RESUMEN

The glycocalyx attached to the apical surface of vascular endothelial cells is a rich network of proteoglycans, glycosaminoglycans, and glycoproteins with instrumental roles in vascular homeostasis. Given their molecular complexity and ability to interact with the intra- and extracellular environment, heparan sulfate proteoglycans uniquely contribute to the glycocalyx's role in regulating endothelial permeability, mechanosignaling, and ligand recognition by cognate cell surface receptors. Much attention has recently been devoted to the enzymatic shedding of heparan sulfate proteoglycans from the endothelial glycocalyx and its impact on vascular function. However, other molecular modifications to heparan sulfate proteoglycans are possible and may have equal or complementary clinical significance. In this narrative review, we focus on putative mechanisms driving non-proteolytic changes in heparan sulfate proteoglycan expression and alterations in the sulfation of heparan sulfate side chains within the endothelial glycocalyx. We then discuss how these specific changes to the endothelial glycocalyx impact endothelial cell function and highlight therapeutic strategies to target or potentially reverse these pathologic changes.

2.
Genes (Basel) ; 12(8)2021 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-34440300

RESUMEN

FGFR1 encodes a transmembrane cytokine receptor, which is involved in the early development of the human embryo and plays an important role in gastrulation, organ specification and patterning of various tissues. Pathogenic FGFR1 variants have been associated with Kallmann syndrome and hypogonadotropic hypogonadism. In our congenital scoliosis (CS) patient series of 424 sporadic CS patients under the framework of the Deciphering disorders Involving Scoliosis and COmorbidities (DISCO) study, we identified four unrelated patients harboring FGFR1 variants, including one frameshift and three missense variants. These variants were predicted to be deleterious by in silico prediction and conservation analysis. Signaling activities and expression levels of the mutated protein were evaluated in vitro and compared to that of the wild type (WT) FGFR1. As a result, the overall protein expressions of c.2334dupC, c.2339T>C and c.1261A>G were reduced to 43.9%, 63.4% and 77.4%, respectively. By the reporter gene assay, we observed significantly reduced activity for c.2334dupC, c.2339T>C and c.1261A>G, indicating the diminished FGFR1 signaling pathway. In conclusion, FGFR1 variants identified in our patients led to only mild disruption to protein function, caused milder skeletal and cardiac phenotypes than those reported previously.


Asunto(s)
Mutación del Sistema de Lectura , Mutación Missense , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Escoliosis/congénito , Escoliosis/genética , Adolescente , Niño , Preescolar , Estudios de Cohortes , Femenino , Factores de Crecimiento de Fibroblastos/genética , Genes Reporteros , Humanos , Lactante , Recién Nacido , Masculino , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal
3.
Bone Rep ; 7: 90-97, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29021995

RESUMEN

Tumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome clinically characterized by bone pain, fractures and muscle weakness. It is caused by tumoral overproduction of fibroblast growth factor 23 (FGF23) that acts primarily at the proximal renal tubule, decreasing phosphate reabsorption and 1α-hydroxylation of 25 hydroxyvitamin D, thus producing hypophosphatemia and osteomalacia. Lesions are typically small, benign mesenchymal tumors that may be found in bone or soft tissue, anywhere in the body. In up to 60% of these tumors, a fibronectin-1(FN1) and fibroblast growth factor receptor-1 (FGFR1) fusion gene has been identified that may serve as a tumoral driver. The diagnosis is established by the finding of acquired chronic hypophosphatemia due to isolated renal phosphate wasting with concomitant elevated or inappropriately normal blood levels of FGF23 and decreased or inappropriately normal 1,25-OH2-Vitamin D (1,25(OH)2D). Locating the tumor is critical, as complete removal is curative. For this purpose, a step-wise approach is recommended, starting with a thorough medical history and physical examination, followed by functional imaging. Suspicious lesions should be confirmed by anatomical imaging, and if needed, selective venous sampling with measurement of FGF23. If the tumor is not localized, or surgical resection is not possible, medical therapy with phosphate and active vitamin D is usually successful in healing the osteomalacia and reducing symptoms. However, compliance is often poor due to the frequent dosing regimen and side effects. Furthermore, careful monitoring is needed to avoid complications such us secondary/tertiary hyperparathyroidism, hypercalciuria, and nephrocalcinosis. Novel therapeutical approaches are being developed for TIO patients, such as image-guided tumor ablation and medical treatment with the anti-FGF23 monoclonal antibody KRN23 or anti FGFR medications. The case of a patient with TIO is presented to illustrate the importance of adequate and appropriate evaluation of patients with bone pain and hypophosphatemia, as well as an step-wise localization study of patients with suspected TIO.

4.
Acta Pharm Sin B ; 5(2): 145-50, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26579440

RESUMEN

microRNAs (miRNAs or miRs) are small non-coding RNAs that are involved in post-transcriptional regulation of their target genes in a sequence-specific manner. Emerging evidence demonstrates that miRNAs are critical regulators of lipid synthesis, fatty acid oxidation and lipoprotein formation and secretion. Dysregulation of miRNAs disrupts gene regulatory network, leading to metabolic syndrome and its related diseases. In this review, we introduced epigenetic and transcriptional regulation of miRNAs expression. We emphasized on several representative miRNAs that are functionally involved into lipid metabolism, including miR-33/33(⁎), miR122, miR27a/b, miR378/378(⁎), miR-34a and miR-21. Understanding the function of miRNAs in lipid homeostasis may provide potential therapeutic strategies for fatty liver disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA