Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Am J Physiol Endocrinol Metab ; 327(3): E279-E289, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39017679

RESUMEN

Fibroblast growth factor 19 (FGF19) is a hormone synthesized in enterocytes in response to bile acids. This review explores the pivotal role of FGF19 in metabolism, addressing the urgent global health concern of obesity and its associated pathologies, notably type 2 diabetes. The intriguing inverse correlation between FGF19 and body mass or visceral adiposity, as well as its rapid increase following bariatric surgery, emphasizes its potential as a therapeutic target. This article meticulously examines the impact of FGF19 on metabolism by gathering evidence primarily derived from studies conducted in animal models or cell lines, using both FGF19 treatment and genetic modifications. Overall, these studies demonstrate that FGF19 has antidiabetic and antiobesogenic effects. A thorough examination across metabolic tissues, including the liver, adipose tissue, skeletal muscle, and the central nervous system, is conducted, unraveling the intricate interplay of FGF19 across diverse organs. Moreover, we provide a comprehensive overview of clinical trials involving an FGF19 analog called aldafermin, emphasizing promising results in diseases such as nonalcoholic steatohepatitis and diabetes. Therefore, we aim to foster a deeper understanding of FGF19 role and encourage further exploration of its clinical applications, thereby advancing the field and offering innovative approaches to address the escalating global health challenge of obesity and related metabolic conditions.


Asunto(s)
Diabetes Mellitus Tipo 2 , Factores de Crecimiento de Fibroblastos , Obesidad , Factores de Crecimiento de Fibroblastos/metabolismo , Humanos , Animales , Obesidad/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Ensayos Clínicos como Asunto , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico
2.
Clinics ; Clinics;75: e1486, 2020. tab
Artículo en Inglés | LILACS | ID: biblio-1089605

RESUMEN

OBJECTIVES: Previous studies have not shown any correlation between bile acid metabolism and bone mineral density (BMD) in women with postmenopausal osteoporosis. Thus, the current study evaluated the association between bile acid levels as well as BMD and bone turnover marker levels in this group of women. METHODS: This single-center cross-sectional study included 150 postmenopausal Chinese women. According to BMD, the participants were divided into three groups: osteoporosis group, osteopenia group, and healthy control group. Serum bile acid, fibroblast growth factor 19 (FGF19), and bone turnover biomarker levels were assessed. Moreover, the concentrations of parathyroid hormone, 25-hydroxy vitamin D [25(OH)D], procollagen type I N-peptide (P1NP), and beta-CrossLaps of type I collagen containing cross-linked C-terminal telopeptide (β-CTX) were evaluated. The BMD of the lumbar spine and proximal femur were examined via dual-energy X-ray absorptiometry. RESULTS: The serum total bile acid levels in the osteoporosis and osteopenia groups (5.28±1.56 and 5.31±1.56 umol/L, respectively) were significantly lower than that in the healthy control group (6.33±2.04 umol/L; p=0.002 and 0.018, respectively). Serum bile acid level was positively associated with the BMD of the lumbar spine, femoral neck, and total hip. However, it negatively correlated with β-CTX concentration. Moreover, no correlation was observed between bile acid and P1NP levels, and the levels of the other biomarkers that were measured did not differ between the groups. CONCLUSION: Serum bile acid was positively correlated with BMD and negatively correlated with bone turnover biomarkers reflecting bone absorption in postmenopausal women. Thus, bile acid may play an important role in bone metabolism.


Asunto(s)
Humanos , Femenino , Persona de Mediana Edad , Densidad Ósea , Bilis , Biomarcadores , Absorciometría de Fotón , Osteoporosis Posmenopáusica , Estudios Transversales , Remodelación Ósea , Posmenopausia , Colágeno Tipo I
3.
Ann Hepatol ; 16(Suppl. 1: s3-105.): 16-21, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29118282

RESUMEN

Bile acids (BAs), the end products of cholesterol catabolism, are essential for the absorption of lipids and fat-soluble vitamins; but they have also emerged as novel signaling molecules that act as metabolic regulators. It has been well described that the enterohepatic circulation, a nuclear (FXR) and a cytoplasmic (TGR5/M-BAR) receptor aid in controlling hepatic bile acid synthesis. Modulating bile acid synthesis greatly impacts in metabolism, because these receptors also are implicated in glucose, lipid, and energy expenditure. Recent studies had revealed the way these receptors participate in regulating gluconeogenesis, peripheral insulin sensitivity, glycogen synthesis, glucagon like peptide 1 (GLP-1) and insulin secretion. Nowadays, it is demonstrated that enhancing bile acid signaling in the intestine contributes to the metabolic benefits of bile acid sequestrants and bariatric surgery on glucose homeostasis. This paper discusses the role of bile acid as regulators of glucose metabolism and their potential as therapeutic targets for diabetes.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Glucemia/metabolismo , Diabetes Mellitus/metabolismo , Mucosa Intestinal/metabolismo , Hígado/metabolismo , Animales , Ácidos y Sales Biliares/sangre , Glucemia/efectos de los fármacos , Diabetes Mellitus/sangre , Diabetes Mellitus/tratamiento farmacológico , Metabolismo Energético , Humanos , Hipoglucemiantes/uso terapéutico , Intestinos/efectos de los fármacos , Hígado/efectos de los fármacos , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal
4.
Ann Hepatol ; 16 Suppl 1: S15-S20, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31196630

RESUMEN

Bile acids (BAs), the end products of cholesterol catabolism, are essential for the absorption of lipids and fat-soluble vitamins; but they have also emerged as novel signaling molecules that act as metabolic regulators. It has been well described that the enterohe-patic circulation, a nuclear (FXR) and a cytoplasmic (TGR5/M-BAR) receptor aid in controlling hepatic bile acid synthesis. Modulating bile acid synthesis greatly impacts in metabolism, because these receptors also are implicated in glucose, lipid, and energy expenditure. Recent studies had revealed the way these receptors participate in regulating gluconeogenesis, peripheral insulin sensitivity, glycogen synthesis, glucagon like peptide 1 (GLP-1) and insulin secretion. Nowadays, it is demonstrated that enhancing bile acid signaling in the intestine contributes to the metabolic benefits of bile acid sequestrants and bariatric surgery on glucose homeos-tasis. This paper discusses the role of bile acid as regulators of glucose metabolism and their potential as therapeutic targets for diabetes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA