Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Hazard Mater ; 480: 135750, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39276730

RESUMEN

Non-ferrous mine waste dumps globally generate soil pollution characterized by low pH and high metal(loid)s content. In this study, the steel slag (SS), gypsum (G), and coal gangue (CG) combined with functional bacteria consortium (FB23) were used for immobilizing metal(loid)s in the soil. The result shown that FB23 can effectively decrease As, Pb, and Zn concentrations within 10 d in an aqueous medium experiment. In a 310-day field column experiment, solid waste including SS, G, and CG combined with FB23 decreased As, Cd, Cu, and Pb concentrations in the aqueous phase. Optimized treatment was obtained by combining FB23 with 1% SS, 1% G, and 1.5% CG. Furthermore, the application of solid waste (SS, G, and CG) increased the top 20 functional bacterial consortium (FB23) abundance at the genus level from 1% to 21% over 50 days in the soil waste dump. Moreover, dissolved organic carbon (DOC) and pH were identified as the main factors influencing the reduction in bioavailable As, Cd, Cu, and Pb in the combination remediation. Additionally, the reduction of Fe and sulfur S was crucial for decreasing the mobilization of the metal(loid)s. This study provides valuable insights into the remediation of metal contamination on a larger scale.

2.
Biochem Pharmacol ; 226: 116375, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38906227

RESUMEN

Fat mass and obesity-associated protein (FTO) is an N6-methyladenosine (m6A) demethylase and plays critical oncogenic roles in multiple cancers. Here we show that FTO is an effective target in hepatocellular carcinoma (HCC). FTO is highly expressed in patients with HCC. Genetic depletion of Fto dramatically attenuated HCC progression in mice. Pharmacological inhibition of FTO by FB23/FB23-2 markedly suppressed the proliferation and migration of HCC cell lines in vitro and inhibited HCC tumorigenicity in xeno-transplanted mice. Mechanistically, FB23-2 suppressed the expression of Erb-b2 receptor tyrosine kinase 3 (ERBB3) and human tubulin beta class Iva (TUBB4A) by increasing the m6A level in these mRNA transcripts. The decrease in ERBB3 expression resulted in the inhibition of Akt-mTOR signaling, which subsequently impaired the proliferation and survival of HCC cells. Moreover, FB23-2 disturbed the stability of the tubulin cytoskeleton, whereas overexpression of TUBB4A rescued the migration of HCC cells. Collectively, our study demonstrates that FTO plays a critical role in HCC by maintaining the proliferation and migration of cells and highlights the potential of FTO inhibitors for targeting HCC.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Carcinoma Hepatocelular , Neoplasias Hepáticas , Receptor ErbB-3 , Tubulina (Proteína) , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/antagonistas & inhibidores , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Humanos , Animales , Ratones , Tubulina (Proteína)/metabolismo , Receptor ErbB-3/metabolismo , Receptor ErbB-3/genética , Receptor ErbB-3/antagonistas & inhibidores , Línea Celular Tumoral , Ratones Desnudos , Masculino , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/efectos de los fármacos
3.
Comb Chem High Throughput Screen ; 26(10): 1848-1855, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36177634

RESUMEN

OBJECTIVE: Myocardial ischemia-reperfusion (IR) injury is an unresolved medical problem with a high incidence. This study aims to analyze the novel molecular mechanism by which curcuminoids protect cardiomyocytes from IR injury. METHODS: A IR model In Vitro of rat cardiomyocytes H9c2 cells was structured. Curcumin (CUR) and its derivatives, demethoxycurcumin (DMC) and bisdemethoxycurcumin (BDMC) treated H9c2 cells, and reactive oxygen species (ROS) production, viability, apoptosis, mitochondrial membrane potential (MMP), oxidative stress and total RNA m6A levels of H9c2 cells were detected by using DCFH-DA stain, CCK-8, flow cytometry, Hoechst 33342 stain, TMRM stain, ELISA and RTqPCR. FB23 was used in rescue experiments. RESULTS: IR significantly increased ROS production, decreased cell viability, and induced apoptosis, MMP loss, and oxidative stress. In addition, IR induced an increase in total RNA m6A levels and changes in m6A-related proteins expression. CUR (10 µM), DMC (10 µM) and BDMC (10 µM), significantly inhibited IR-induced ROS production, apoptosis, MMP loss and oxidative stress, and enhanced cell viability. Furthermore, CUR, DMC and BDMC altered the expression pattern of m6A-related proteins and reduced IR-induced total m6A levels. There was no significant difference in the effects of the three. CUR's protective effect was partially reduced by FB23. CONCLUSION: Curcuminoids attenuate myocardial IR injury by regulating total RNA m6A levels.


Asunto(s)
Curcumina , Daño por Reperfusión Miocárdica , Ratas , Animales , Diarilheptanoides/farmacología , Diarilheptanoides/metabolismo , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Curcumina/farmacología , Apoptosis , ARN/metabolismo , Miocitos Cardíacos/metabolismo
4.
Chinese Pharmacological Bulletin ; (12): 125-130, 2023.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1013888

RESUMEN

Aim To investigate the effect of m6A demethylase FTO inhibitor(FB23-2)on human glioblastoma stem cell activity. Methods The effects of FB23-2 and Temozolomide on GSC were detected by CCK-8 assay and neurosphere formation assay. The effect of FB23-2 on self-renewal of GSC was detected by limited dilution assay in vitro. The effect of FB23-2 on the proliferation of GSC was detected by EdU method. The effect of FB23-2 on apoptosis of glioblastoma stem cells was detected by flow cytometry. Results CCK-8 assay showed that FB23-2 could effectively inhibit the cell viability of GSC with IC50 values of 7.11 μmol·L-1 and 4.63 μmol·L-1,respectively. The size and number of GSC neural sphere in FB23-2 treatment group were significantly reduced compared with control group. In vitro limited dilution experiment showed that FB23-2 effectively inhibited the self-renewal ability of GSC. EdU incorporation experiment showed that compared with the control group,the treatment group decreased to(70.59±13.74)% and(50.33±4.53)%,respectively. The apoptotic rates of the treated group were(12.16±1.90)% and(16.77±1.17)% by flow cytometry. Conclusions FTO inhibitor FB23-2 can effectively inhibit GSC growth,self-renewal and the formation of neural sphere. In addition,FB23-2 can inhibit the proliferation of GSC and induce its apoptosis.

5.
Acta Pharmacol Sin ; 43(5): 1311-1323, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34462564

RESUMEN

N6-methyladenosine (m6A) is the most abundant posttranscriptional methylation modification that occurs in mRNA and modulates the fine-tuning of various biological processes in mammalian development and human diseases. In this study we investigated the role of m6A modification in the osteogenesis of mesenchymal stem cells (MSCs), and the possible mechanisms by which m6A modification regulated the processes of osteoporosis and bone necrosis. We performed systematic analysis of the differential gene signatures in patients with osteoporosis and bone necrosis and conducted m6A-RNA immunoprecipitation (m6A-RIP) sequencing to identify the potential regulatory genes involved in osteogenesis. We showed that fat mass and obesity (FTO), a primary m6A demethylase, was significantly downregulated in patients with osteoporosis and osteonecrosis. During the differentiation of human MSCs into osteoblasts, FTO was markedly upregulated. Both depletion of FTO and application of the FTO inhibitor FB23 or FB23-2 impaired osteogenic differentiation of human MSCs. Knockout of FTO in mice resulted in decreased bone mineral density and impaired bone formation. PPARG, a biomarker for osteoporosis, was identified as a critical downstream target of FTO. We further revealed that FTO mediated m6A demethylation in the 3'UTR of PPARG mRNA, and reduced PPARG mRNA stability in an YTHDF1-dependent manner. Overexpression of PPARG alleviated FTO-mediated osteogenic differentiation of MSCs, whereas knockdown of PPARG promoted FTO-induced expression of the osteoblast biomarkers ALPL and OPN during osteogenic differentiation. Taken together, this study demonstrates the functional significance of the FTO-PPARG axis in promoting the osteogenesis of human MSCs and sheds light on the role of m6A modification in mediating osteoporosis and osteonecrosis.


Asunto(s)
Células Madre Mesenquimatosas , Osteonecrosis , Osteoporosis , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Animales , Diferenciación Celular , Humanos , Mamíferos/genética , Mamíferos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Noqueados , Osteogénesis , Osteonecrosis/metabolismo , Osteoporosis/genética , PPAR gamma/metabolismo , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA