Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.897
Filtrar
1.
Int J Lab Hematol ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39255961

RESUMEN

INTRODUCTION: Epigenetics has been shown to be relevant in oncology: BMI1 overexpression has been reported in leukemias, EZH2 mutations have been found in follicular lymphoma, and USP22 seems to stabilize BMI1 protein. In this study, we measured the expression of BMI1, EZH2, and USP22 in lymph nodes from 56 diffuse large B-cell lymphoma (DLBCL) patients. METHODS: A new multiplex digital droplet PCR (ddPCR) has been set up to measure the expression of 4 genes (BMI1, EZH2, USP22, and GAPDH) in the same reaction on RNA extracted from paraffin-embedded tissues. RESULTS: The specificity of ddPCR was confirmed by a 100% alignment on the BLAST platform and its repeatability demonstrated by duplicates. A strict correlation between expression of BMI1 and EZH2 and BMI1 and USP22 has been found, and high expression of these genes was correlated with extra-nodal lymphomas. Progression-free survival (PFS) and overall survival (OS) were conditioned by IPI, bone marrow infiltration, and the complete response achievement. High levels of BMI1 and USP22 did not condition the response to therapy, but impaired the PFS, especially for patients defined at "high risk" based on the cell of origin (no germinal center [GCB]), high BCL2 expression, and IPI 3-5. In this subgroup, the probability of relapse/progression was twice higher than that of patients carrying low BMI1 and USP22 levels. CONCLUSION: High expression of BMI1 and of USP22 might be a poor prognostic factor in DLBCL, and might represent the target for novel inhibitors.

2.
Carbohydr Polym ; 346: 122645, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39245506

RESUMEN

Melanoma either intrinsically possesses resistance or rapidly acquires resistance to anti-tumor therapy, which often leads to local recurrence or distant metastasis after resection. In this study, we found histone 3 lysine 27 (H3K27) demethylated by an inhibitor of histone methyltransferase EZH2 could epigenetically reverse the resistance to chemo-drug paclitaxel (PTX), or enhance the efficacy of immune checkpoint inhibitor anti-TIGIT via downregulating TIGIT ligand CD155. Next, to address the complexity in the combination of multiple bioactive molecules with distinct therapeutic properties, we developed a polysaccharides-based organohydrogel (OHG) configured with a heterogenous network. Therein, hydroxypropyl chitosan (HPC)-stabilized emulsions for hydrophobic drug entrapment were crosslinked with oxidized dextran (Odex) to form a hydrophilic gel matrix to facilitate antibody accommodation, which demonstrated a tunable sustained release profile by optimizing emulsion/gel volume ratios. As results, local injection of OHG loaded with EZH2 inhibitor UNC1999, PTX and anti-TIGIT did not only synergistically enhance the cytotoxicity of PTX, but also reprogrammed the immune resistance via bi-directionally blocking TIGIT/CD155 axis, leading to the recruitment of cytotoxic effector cells into tumor and conferring a systemic immune memory to prevent lung metastasis. Hence, this polysaccharides-based OHG represents a potential in-situ epigenetic-, chemo- and immunotherapy platform to treat unresectable metastatic melanoma.


Asunto(s)
Quitosano , Dextranos , Proteína Potenciadora del Homólogo Zeste 2 , Epigénesis Genética , Melanoma , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/inmunología , Quitosano/química , Quitosano/análogos & derivados , Dextranos/química , Animales , Melanoma/tratamiento farmacológico , Melanoma/patología , Melanoma/inmunología , Ratones , Humanos , Epigénesis Genética/efectos de los fármacos , Paclitaxel/farmacología , Paclitaxel/química , Paclitaxel/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Hidrogeles/química , Línea Celular Tumoral , Receptores Inmunológicos/antagonistas & inhibidores , Receptores Inmunológicos/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química
3.
Brain Res Bull ; 217: 111060, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39236791

RESUMEN

BACKGROUND: The molecular biology mechanisms underlying postoperative cognitive dysfunction (POCD) remain unclear, resulting in a lack of specific therapeutic targets and limited clinical treatment options. The NLRP3 pyroptotic pathway, induced by neuroinflammation, is known to promote the development of POCD. Research has shown that lncRNA MEG3 exacerbates cell pyroptosis in various neurological injuries, though the precise mechanism remains to be investigated. METHODS: In vitro and in vivo models of POCD were established through treatment with sevoflurane. Gene and protein expression were investigated using qRT-PCR, Western blot analysis, ELISA, and histological staining. Additionally, cell viability and injury were assessed through CCK-8 and LDH assays. Hippocampal-dependent memory and cognitive abilities were evaluated using the Morris Water Maze (MWM) test. Furthermore, the interactions between MEG3 and EZH2/YTHDC1 were validated through RNA immunoprecipitation (RIP) and chromatin immunoprecipitation (ChIP). RESULTS: Our findings reveal that sevoflurane significantly reduced MEG3 and pyroptosis-related proteins in mice. The overexpression of MEG3 protected mice against sevoflurane-induced cognitive dysfunction and reversed sevoflurane-induced pyroptosis in hippocampal neurons. MEG3 induced the downregulation of NLRP3 expression and reduced mRNA stability through its interaction with EZH2/YTHDC1. CONCLUSION: In conclusion, our study elucidates that MEG3 inhibits the NLRP3 inflammasome and hippocampal neuron pyroptosis through the recruitment of EZH2/YTHDC1. These findings shed light on the underlying mechanism of MEG3 in the regulation of POCD and suggest that MEG3 could serve as a potential therapeutic target for the treatment of POCD.

4.
Cell Mol Gastroenterol Hepatol ; : 101404, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39278404

RESUMEN

BACKGROUND AND AIMS: The RNA-binding motif protein 39 (RBM39) functions as both an RNA-binding protein and a splicing factor in a variety of cancer types. However, the function of RBM39 in cholangiocarcinoma (CCA) remains undefined. In this study, we aimed to investigate the role of RBM39 in CCA and explore its potential as a therapeutic target. METHODS: The expression of RBM39 in CCA was investigated by analyzing human CCA tumor specimens. CRISPR/Cas9 or shRNA-mediated depletion of RBM39 was performed in vitro and in vivo to document the oncogenic role of RBM39 in CCA. The anti-tumor effect of the RBM39 inhibitor Indisulam in combination with the EZH2 degrader MS177 was assessed in vitro and in vivo. RESULTS: RBM39 is significantly increased in human CCA tissues and associated with a poor prognosis in CCA patients. Depletion of RBM39 by CRISPR/Cas9 or shRNA inhibited CCA cell proliferation in vitro and prevented CCA development and tumor growth in mice. Mechanistically, our results showed that depletion of RBM39 suppressed EZH2 expression via disrupting its mRNA splicing. RBM39-regulated EZH2 controls WNT7B/ß-catenin activity. Pharmacological co-targeting of RBM39 (with Indisulam) and EZH2 (with MS177) resulted in a synergistic antitumor effect, both in vitro and in vivo. CONCLUSION: This study discloses a novel RBM39-EZH2-ß-catenin signaling axis that is crucial for CCA growth. Our findings suggest that simultaneous inhibition of RBM39 and EZH2 presents a promising therapeutic strategy for CCA treatment.

5.
Cell Rep ; 43(9): 114724, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39264807

RESUMEN

The immunosuppressive function of regulatory T (Treg) cells is essential for maintaining immune homeostasis. Enhancer of zeste homolog 2 (EZH2), a histone H3 lysine 27 (H3K27) methyltransferase, plays a key role in maintaining Treg cell function upon CD28 co-stimulation, and Ezh2 deletion in Treg cells causes autoimmunity. Here, we assess whether increasing H3K27me3 levels, by using an Ezh2Y641F gain-of-function mutation, will improve Treg cell function. We find that Treg cells expressing Ezh2Y641F display an effector Treg phenotype, are poised for improved homing to organ tissues, and can accelerate remission from autoimmunity. The H3K27me3 landscape and transcriptome of naive Ezh2Y641F Treg cells exhibit a redistribution of H3K27me3 modifications that recapitulates the gene expression profile of activated Ezh2WT Treg cells after CD28 co-stimulation. Altogether, increased H3K27me3 levels promote the differentiation of effector Treg cells that can better suppress autoimmunity.

6.
Bioorg Med Chem Lett ; : 129968, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39293534

RESUMEN

Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase that plays an important role in cancer cells biology. However, present EZH2 inhibitors in clinic have not achieved satisfactory efficacy. Herein, a number of EZH2-targeted PROTAC compounds were designed and synthesized by selecting different linkers, using Tazemetostat as the protein of interest (POI) portion of PROTAC molecules, hoping to improve the defects of existing EZH2 inhibitors effectively. Among all the target compounds, ZJ-20 showed the best performance with an IC50 value of 5.0 nM against MINO cells, good pharmacokinetics parameters and a limited acceptable oral bioavailability. Significantly, ZJ-20 could achieve degradation of the entire PRC2 complex by targeting EZH2, which can serve as a lead compound for further study.

7.
J Biochem Mol Toxicol ; 38(9): e23810, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39163614

RESUMEN

Intestinal ischemia-reperfusion (IR) injury is a common gastrointestinal disease that induces severe intestinal dysfunction. Intestinal myenteric neurons participate in maintaining the intestinal function, which will be severely injured by IR. Macrophages are widely reported to be involved in the pathogenesis of organ IR injury, including intestine, which is activated by NLRP3 signaling. Lonicerin (LCR) is a natural extracted monomer with inhibitory efficacy against the NLRP3 pathway in macrophages. The present study aims to explore the potential protective function of LCR in intestinal IR injury. Myenteric neurons were extracted from mice. RAW 264.7 cells were stimulated by H/R with or without 10 µM and 30 µM LCR. Remarkable increased release of IL-6, MCP-1, and TNF-α were observed in H/R treated RAW 264.7 cells, along with an upregulation of NLRP3, cleaved-caspase-1, IL-1ß, and EZH2, which were sharply repressed by LCR. Myenteric neurons were cultured with the supernatant collected from each group. Markedly decreased neuron number and shortened length of neuron axon were observed in the H/R group, which were signally reversed by LCR. RAW 264.7 cells were stimulated by H/R, followed by incubated with 30 µM LCR with or without pcDNA3.1-EZH2. The inhibition of LCR on NLRP3 signaling in H/R treated RAW 264.7 cells was abolished by EZH2 overexpression. Furthermore, the impact of LCR on neuron number and neuron axon length in myenteric neurons in the H/R group was abated by EZH2 overexpression. Collectively, LCR alleviated intestinal myenteric neuron injury induced by H/R treated macrophages via downregulating EZH2.


Asunto(s)
Regulación hacia Abajo , Proteína Potenciadora del Homólogo Zeste 2 , Macrófagos , Neuronas , Daño por Reperfusión , Animales , Ratones , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Células RAW 264.7 , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/patología , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Regulación hacia Abajo/efectos de los fármacos , Intestinos/patología , Intestinos/efectos de los fármacos , Plexo Mientérico/metabolismo , Plexo Mientérico/patología , Masculino , Ratones Endogámicos C57BL
8.
Cancer Cell ; 42(8): 1434-1449.e5, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39137728

RESUMEN

Hypothyroidism is commonly detected in patients with medulloblastoma (MB). However, whether thyroid hormone (TH) contributes to MB pathogenicity remains undetermined. Here, we find that TH plays a critical role in promoting tumor cell differentiation. Reduction in TH levels frees the TH receptor, TRα1, to bind to EZH2 and repress expression of NeuroD1, a transcription factor that drives tumor cell differentiation. Increased TH reverses EZH2-mediated repression of NeuroD1 by abrogating the binding of EZH2 and TRα1, thereby stimulating tumor cell differentiation and reducing MB growth. Importantly, TH-induced differentiation of tumor cells is not restricted by the molecular subgroup of MB, suggesting that TH can be used to broadly treat MB subgroups. These findings establish an unprecedented association between TH signaling and MB pathogenicity, providing solid evidence for TH as a promising modality for MB treatment.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Diferenciación Celular , Proteína Potenciadora del Homólogo Zeste 2 , Meduloblastoma , Hormonas Tiroideas , Meduloblastoma/patología , Meduloblastoma/metabolismo , Meduloblastoma/genética , Humanos , Diferenciación Celular/efectos de los fármacos , Animales , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Ratones , Hormonas Tiroideas/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Neoplasias Cerebelosas/patología , Neoplasias Cerebelosas/metabolismo , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/tratamiento farmacológico , Línea Celular Tumoral , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Receptores alfa de Hormona Tiroidea/metabolismo , Receptores alfa de Hormona Tiroidea/genética , Transducción de Señal/efectos de los fármacos
9.
Int J Hematol ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39179948

RESUMEN

Previously, we reported the efficacy and safety of tazemetostat in Japanese patients with relapsed/refractory follicular lymphoma (FL) and diffuse large B-cell lymphoma (DLBCL) harboring the EZH2 mutation in a multicenter, open-label, phase II study. Here, we present a follow-up analysis of tazemetostat at a long-term median follow-up of 35.0 months. Twenty patients were enrolled: 17 in the FL cohort and three in the DLBCL cohort. In the FL cohort, the objective response rate was 70.6%, consistent with the primary analysis, and the median progression-free survival (PFS) was not reached. The 24-month and 36-month PFS rates were 72.1% (95% confidence interval [CI] 41.5%-88.6%) and 64.1% (95% CI 33.7%-83.4%), respectively. The median duration of treatment was 30.2 months. After the primary analysis at a median follow-up of 12.9 months, grade 1-2 urinary tract infection, peripheral motor neuropathy, and hypogammaglobulinemia newly emerged, but the incidence of adverse events (AEs) did not increase notably during this follow-up period. No unexpected grade ≥ 3 treatment-related AEs were reported. Long-term oral monotherapy with tazemetostat showed favorable efficacy and safety profiles, indicating that it may be a useful third-line or later treatment option for patients with relapsed/refractory FL harboring the EZH2 mutation. Trial registration: ClinicalTrials.gov: NCT03456726.

10.
Front Pharmacol ; 15: 1395160, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39135784

RESUMEN

Introduction: Endometriosis (EMs) is characterized by ectopic growth of active endometrial tissue outside the uterus. The Luoshi Neiyi prescription (LSNYP) has been extensively used for treating EMs in China. However, data on the active chemical components of LSNYP are insufficient, and its pharmacological mechanism in EMs treatment remains unclear. This study aimed to explore the potential mechanism of LSNYP for EMs through network pharmacology based on the components absorbed into the blood. Methods: Ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry was used to analyze blood components, and a series of network pharmacology strategies were utilized to predict targets of these components and EMs. Protein-protein interaction (PPI) network analysis, component-target-disease network construction, gene ontology (GO) functional enrichment analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed. Additionally, molecular docking, molecular dynamics simulations, and in vitro and in vivo experiments were conducted to validate the HIF1A/EZH2/ANTXR2 pathway associated with hypoxic pathology in EMs. Results: Thirty-four absorbed components suitable for network pharmacology analysis were identified, and core targets, such as interleukin 6, EGFR, HIF1A, and EZH2, were founded. Enrichment results indicated that treatment of EMs with LSNYP may involve the regulation of hypoxia and inflammatory-related signaling pathways and response to oxidative stress and transcription factor activity. Experimental results demonstrated that LSNYP could decrease the expression of HIF1A, ANTXR2, YAP1, CD44, and ß-catenin, and increased EZH2 expression in ectopic endometrial stromal cells and endometriotic tissues. Molecular docking and molecular dynamics simulations manifested that there was stable combinatorial activity between core components and key targets of the HIF1A/EZH2/ANTXR2 pathway. Conclusion: LSNYP may exert pharmacological effects on EMs via the HIF1A/EZH2/ANTXR2 pathway; hence, it is a natural herb-related therapy for EMs.

11.
J Pharm Pharmacol ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39137155

RESUMEN

OBJECTIVE: This study aimed to investigate the protective effect of bone marrow mesenchymal stem cell-derived exosomes (BMSCs-exo) against lower limb ischemia/reperfusion (I/R) injury-induced pyroptosis in skeletal muscle. METHODS: A mouse model of lower limb I/R injury was utilized to assess the impact of BMSCs-exo, particularly when loaded with microRNA-367-3p (miR-367-3p), on pyroptosis. Histological examination, wet weight/dry weight ratio measurements, and luciferase assays were employed to elucidate the mechanisms involved. KEY FINDINGS: BMSCs-exo effectively suppressed pyroptosis in injured skeletal muscle tissue. Loading BMSCs-exo with miR-367-3p enhanced this protective effect by downregulating key pyroptosis-related proteins. Luciferase assays identified enhancer of zeste homolog 2 (EZH2) as a direct target of miR-367-3p in BMSCs-exo. CONCLUSIONS: BMSCs-exo loaded with miR-367-3p safeguarded mouse skeletal muscle against pyroptosis-induced I/R injury by targeting EZH2. These findings offer valuable insights into potential therapeutic strategies for lower limb I/R injuries, emphasizing the therapeutic potential of BMSCs-exo in mitigating tissue damage caused by pyroptosis.

12.
Front Pharmacol ; 15: 1430891, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39114365

RESUMEN

Chromobox (CBX) 2, a member of the CBX protein family and a crucial component of the polycomb repressive complex (PRC), exerts significant influence on the epigenetic regulation of tumorigenesis, including glioma. However, the precise role of CBX2 in glioma has remained elusive. In our study, we observed a substantial upregulation of CBX2 expression in glioma, which displayed a strong correlation with pathological grade, chemoresistance, and unfavorable prognosis. Through a series of in vivo and in vitro experiments, we established that heightened CBX2 expression facilitated glioma cell proliferation and bolstered resistance to chemotherapy. Conversely, CBX2 knockdown led to a significant inhibition of glioma cell growth and a reduction in chemoresistance. Notably, our investigation uncovered the underlying mechanism by which CBX2 operates, primarily by inhibiting PTEN transcription and activating the AKT/mTOR signalling pathway. Conversely, silencing CBX2 curtailed cell proliferation and attenuated chemoresistance by impeding the activation of the PTEN/AKT/mTOR signalling pathway. Delving deeper into the molecular intricacies, we discovered that CBX2 can recruit EZH2 and modulate the trimethylation of histone H3 lysine 27 (H3K27me3) levels on the PTEN promoter, effectively suppressing PTEN transcription. Our research unveils a comprehensive understanding of how CBX2 impacts the tumorigenesis, progression, chemoresistance, and prognosis of glioma. Furthermore, it presents CBX2 as a promising therapeutic target for drug development and clinical management of glioma.

13.
Cells ; 13(15)2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39120328

RESUMEN

Triple-negative breast cancer (TNBC) represents an aggressive subtype of breast cancer, with a bad prognosis and lack of targeted therapeutic options. Characterized by the absence of estrogen receptors, progesterone receptors, and HER2 expression, TNBC is often associated with a significantly lower survival rate compared to other breast cancer subtypes. Our study aimed to explore the prognostic significance of 83 immune-related genes, by using transcriptomic data from the TCGA database. Our analysis identified the Poliovirus Receptor-Like 3 protein (PVRL3) as a critical negative prognostic marker in TNBC patients. Furthermore, we found that the Enhancer of Zeste Homolog 2 (EZH2), a well-known epigenetic regulator, plays a pivotal role in modulating PVRL3 levels in TNBC cancer cell lines expressing EZH2 along with high levels of PVRL3. The elucidation of the EZH2-PVRL3 regulatory axis provides valuable insights into the molecular mechanisms underlying TNBC aggressiveness and opens up potential pathways for personalized therapeutic intervention.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2 , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Pronóstico , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Femenino , Línea Celular Tumoral , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Nectinas/metabolismo , Nectinas/genética
14.
Transl Oncol ; 49: 102104, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39197387

RESUMEN

BACKGROUND: The Ubiquitin-proteasome system (UPS) is known to participate in multiple cellular events. The deubiquitinating enzyme USP2 (ubiquitin-specific protease 2) is involved in the vasculature remodeling process associated with bladder cancer (BLCA). However, the role of USP2 in BLCA progression has not been clearly defined and whether its regulatory mechanism involving EZH2 (Enhancer of Zeste Homolog 2) remains elusive yet. METHODS: Differential expression patterns of USP2 and EZH2 were examined in 46 pairs of BLCA and adjacent normal tissues. USP2 knockdown plasmids were transfected into 5637 and J82 cells to detect its impact on cell proliferation, migration and invasion using CCK-8, EdU, wound healing and transwell assays. The USP2-EZH2-SOX1 cascade was confirmed through Co-immunoprecipitation (Co-IP) and chromatin immunoprecipitation (ChIP) assays. An in vivo verification was conducted using a xenograft model of nude mice. RESULTS: USP2 was significantly upregulated in BLCA tissues and cells, which was associated with poor clinical prognosis in BLCA patients. USP2 depletion resulted in decreased cell proliferation, migration and invasion in BLCA cells. USP2 stabilized the EZH2 protein by directly binding to it, thereby reducing its ubiquitination. Ectopic introduction of EZH2 restored cell growth and invasion of BLCA cells, which had been inhibited by USP2 silencing. USP2-mediated stabilization of EZH2 promoted the enrichment of histone H3K27me3 and repression of SOX1. Involvement of the USP2-EZH2-SOX1 axis in tumor formation was ultimately verified in vivo. CONCLUSION: Our findings reveal that a USP2-EZH2-SOX1 axis orchestrates the interplay between dysregulated USP2 and EZH2-mediated gene epigenetic silencing in BLCA progression.

15.
J Orthop Surg Res ; 19(1): 467, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39118123

RESUMEN

BACKGROUND: Osteosarcoma is a soft tissue neoplasm with elevated recurrence risk and highly metastatic potential. Metal response element binding transcriptional factor 2 (MTF2) has been revealed to exert multiple activities in human tissues. The present research was conducted to explore the functions and related response mechanism of MTF2 in osteosarcoma which have not been introduced yet. METHODS: Bioinformatics tools identified the differential MTF2 expression in osteosarcoma tissues. MTF2 expression in osteosarcoma cells was examined with Western blot. Cell Counting Kit-8 (CCK-8) assay, 5-Ethynyl-2'-deoxyuridine (EDU) staining, wound healing as well as transwell assays measured cell proliferation, migration and invasion, respectively. Flow cytometry assay detected the cellular apoptotic level. Western blot also measured the expressions of proteins associated with epithelial mesenchymal transition (EMT), apoptosis and enhancer of zeste homolog 2 (EZH2)/secreted frizzled-related protein 1 (SFRP1)/Wnt signaling. Co-immunoprecipitation (Co-IP) assay confirmed MTF2-EZH2 interaction. RESULTS: MTF2 expression was increased in osteosarcoma tissues and cells. MTF2 interference effectively inhibited the proliferation, migration and invasion of osteosarcoma cells and promoted the cellular apoptotic rate. MTF2 directly bound to EZH2 and MTF2 silence reduced EZH2 expression, activated SFRP1 expression and blocked Wnt signaling in osteosarcoma cells. EZH2 upregulation or SFRP1 antagonist WAY-316606 partly counteracted the impacts of MTF2 down-regulation on the SFRP1/Wnt signaling and the biological phenotypes of osteosarcoma cells. CONCLUSIONS: MTF2 might down-regulate SFRP1 to activate Wnt signaling and drive the progression of osteosarcoma via interaction with EZH2 protein.


Asunto(s)
Neoplasias Óseas , Proliferación Celular , Proteína Potenciadora del Homólogo Zeste 2 , Osteosarcoma , Vía de Señalización Wnt , Humanos , Apoptosis/fisiología , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Neoplasias Óseas/genética , Línea Celular Tumoral , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Progresión de la Enfermedad , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Regulación Neoplásica de la Expresión Génica , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Osteosarcoma/metabolismo , Osteosarcoma/patología , Osteosarcoma/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Vía de Señalización Wnt/fisiología , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo
16.
World J Clin Cases ; 12(24): 5568-5582, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39188617

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is the most common subtype of liver cancer. The primary treatment strategies for HCC currently include liver transplantation and surgical resection. However, these methods often yield unsatisfactory outcomes, leading to a poor prognosis for many patients. This underscores the urgent need to identify and evaluate novel therapeutic targets that can improve the prognosis and survival rate of HCC patients. AIM: To construct a radiomics model that can accurately predict the EZH2 expression in HCC. METHODS: Gene expression, clinical parameters, HCC-related radiomics, and fibroblast-related genes were acquired from public databases. A gene model was developed, and its clinical efficacy was assessed statistically. Drug sensitivity analysis was conducted with identified hub genes. Radiomics features were extracted and machine learning algorithms were employed to generate a radiomics model related to the hub genes. A nomogram was used to illustrate the prognostic significance of the computed Radscore and the hub genes in the context of HCC patient outcomes. RESULTS: EZH2 and NRAS were independent predictors for prognosis of HCC and were utilized to construct a predictive gene model. This model demonstrated robust performance in diagnosing HCC and predicted an unfavorable prognosis. A negative correlation was observed between EZH2 expression and drug sensitivity. Elevated EZH2 expression was linked to poorer prognosis, and its diagnostic value in HCC surpassed that of the risk model. A radiomics model, developed using a logistic algorithm, also showed superior efficiency in predicting EZH2 expression. The Radscore was higher in the group with high EZH2 expression. A nomogram was constructed to visually demonstrate the significant roles of the radiomics model and EZH2 expression in predicting the overall survival of HCC patients. CONCLUSION: EZH2 plays significant roles in diagnosing HCC and therapeutic efficacy. A radiomics model, developed using a logistic algorithm, efficiently predicted EZH2 expression and exhibited strong correlation with HCC prognosis.

17.
Cell Mol Gastroenterol Hepatol ; 18(4): 101376, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38969206

RESUMEN

BACKGROUND & AIMS: Restricted gastric motor functions contribute to aging-associated undernutrition, sarcopenia, and frailty. We previously identified a decline in interstitial cells of Cajal (ICC; gastrointestinal pacemaker and neuromodulator cells) and their stem cells (ICC-SC) as a key factor of gastric aging. Altered functionality of the histone methyltransferase enhancer of zeste homolog 2 (EZH2) is central to organismal aging. Here, we investigated the role of EZH2 in the aging-related loss of ICC/ICC-SC. METHODS: klotho mice, a model of accelerated aging, were treated with the most clinically advanced EZH2 inhibitor, EPZ6438 (tazemetostat; 160 mg/kg intraperitoneally twice a day for 3 weeks). Gastric ICC were analyzed by Western blotting and immunohistochemistry. ICC and ICC-SC were quantified by flow cytometry. Gastric slow wave activity was assessed by intracellular electrophysiology. Ezh2 was deactivated in ICC by treating KitcreERT2/+;Ezh2fl/fl mice with tamoxifen. TRP53, a key mediator of aging-related ICC loss, was induced with nutlin 3a in gastric muscle organotypic cultures and an ICC-SC line. RESULTS: In klotho mice, EPZ6438 treatment mitigated the decline in the ICC growth factor KIT ligand/stem cell factor and gastric ICC. EPZ6438 also improved gastric slow wave activity and mitigated the reduced food intake and impaired body weight gain characteristic of this strain. Conditional genomic deletion of Ezh2 in Kit-expressing cells also prevented ICC loss. In organotypic cultures and ICC-SC, EZH2 inhibition prevented the aging-like effects of TRP53 stabilization on ICC/ICC-SC. CONCLUSIONS: Inhibition of EZH2 with EPZ6438 mitigates aging-related ICC/ICC-SC loss and gastric motor dysfunction, improving slow wave activity and food intake in klotho mice.

18.
Diagnostics (Basel) ; 14(14)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39061609

RESUMEN

Androgens have long been recognized as oncogenic agents. They can induce both benign and malignant hepatocellular neoplasms, including hepatocellular adenoma (HCA) and hepatocellular carcinoma, though the underlying mechanisms remain unclear. Androgen-induced liver tumors are most often solitary and clinically silent. Herein, we reported an androgen-induced HCA complicated by spontaneous rupture. The patient was a 24-year-old male presenting with fatigue, diminished libido, radiology-diagnosed hepatocellular adenomatosis for 3 years, and sudden-onset, severe, sharp, constant abdominal pain for one day. He used Aveed (testosterone undecanoate injection) from age 17 and completely stopped one year before his presentation. A physical exam showed touch pain and voluntary guarding in the right upper quadrant of the abdomen. An abdominal CT angiogram demonstrated multiple probable HCAs, with active hemorrhage of the largest one (6.6 × 6.2 × 5.1 cm) accompanied by large-volume hemoperitoneum. After being stabilized by a massive transfusion protocol and interventional embolization, he underwent a percutaneous liver core biopsy. The biopsy specimen displayed atypical hepatocytes forming dense cords and pseudoglands. The lesional cells diffusely stained ß-catenin in nuclei and glutamine synthetase in cytoplasm. Compared to normal hepatocytes from control tissue, the tumor cells were positive for nuclear AR (androgen receptor) expression but had no increased EZH2 (Enhancer of Zeste 2 Polycomb Repressive Complex 2 Subunit) protein expression. The case indicated that androgen-induced hepatocellular neoplasms should be included in the differential diagnosis of acute abdomen.

19.
Toxicology ; 507: 153898, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39032682

RESUMEN

Bisphenol S (BPS), an alternative to bisphenol A (BPA), exerts proliferative effects similar to those of BPA. BPS is a representative endocrine disruptor associated with cancer progression. However, the mechanisms underlying BPS-induced glioblastoma progression are not fully understood. To investigate the effects of BPS on glioblastoma, U-87 MG cancer cell lines were exposed to BPS. The study focused on analyzing the proliferation and migration of U-87 MG cells. Furthermore, the involvement of the enhancer of the zeste homolog 2 (EZH2)-mediated phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of the rapamycin (mTOR) pathway was examined. Pharmacological approaches were employed to inhibit EZH2 activity and observe its effects on BPS-induced changes. The results indicated that BPS promoted the proliferation and migration of U-87 MG cells at a concentration of 0.1 µM. These changes appeared to be linked to the activation of the EZH2-mediated PI3K/AKT/mTOR pathway. Moreover, inhibiting EZH2 activity using pharmacological approaches restored the BPS-mediated induction of proliferation and migration. In conclusion, the results of this study indicated that BPS induces glioblastoma progression through EZH2 upregulation. Therefore, targeting the EZH2-mediated PI3K/AKT/mTOR pathway could be considered a potential therapeutic strategy for the treatment of glioblastoma.


Asunto(s)
Movimiento Celular , Proliferación Celular , Proteína Potenciadora del Homólogo Zeste 2 , Glioblastoma , Fenoles , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Sulfonas , Serina-Treonina Quinasas TOR , Humanos , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Glioblastoma/patología , Glioblastoma/metabolismo , Glioblastoma/tratamiento farmacológico , Fenoles/toxicidad , Fenoles/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Sulfonas/farmacología , Sulfonas/toxicidad , Progresión de la Enfermedad , Disruptores Endocrinos/toxicidad , Fosfatidilinositol 3-Quinasa/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/tratamiento farmacológico
20.
Future Med Chem ; 16(15): 1561-1582, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39082677

RESUMEN

Enhancer of zeste homolog 2 (EZH2), a histone methyltransferase, plays a crucial role in tumor progression by regulating gene expression. EZH2 inhibitors have emerged as promising anti-tumor agents due to their potential in cancer treatment strategies. However, single-target inhibitors often face limitations such as drug resistance and side effects. Dual-target inhibitors, exemplified by EZH1/2 inhibitor HH-2853(28), offer enhanced efficacy and reduced adverse effects. This review highlights recent advancements in dual inhibitors targeting EZH2 and other proteins like BRD4, PARP1, and EHMT2, emphasizing rational design, structure-activity relationships, and safety profiles, suggesting their potential in clinical applications.


[Box: see text].


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2 , Humanos , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Relación Estructura-Actividad , Química Farmacéutica , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Animales , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA