Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 896: 166354, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37595924

RESUMEN

Aerosol Optical Depth (AOD) is a critical optical parameter that quantifies the degree of light attenuation by aerosols and serves as a fundamental indicator of atmospheric quality. Therefore, accurate quantification and retrieval of AOD is crucial for relevant studies. However, current satellite-based AOD retrieval algorithms suffer from inapplicability under low-light conditions, limiting the development of nighttime AOD retrieval. Under this context, we proposed a novel algorithm, namely Simultaneous Consideration of Artificial and Natural light Sources (SCANS), to obtain nighttime AOD. The core of the SCANS algorithm is considering the synergy of both the natural and artificial light sources to obtain nighttime AOD by integrating atmospheric radiative transfer simulation into an extinction method and performing multiple iterations. SCANS was applied to the Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) and the retrieved nighttime AOD was validated with in-situ measurements from five AERONET sites. Results indicate that the Mean Bias Errors (MBEs) of the retrieved nighttime AOD range from 0.0 to 0.08 and the corresponding Root Mean Square Errors (RMSEs) range from 0.11 to 0.17, which exhibit better accuracy than that of the nighttime MERRA-2 AOD. We further compared the retrieved nighttime AOD with the corresponding Air Quality Index (AQI) measurements at six environment monitoring stations and obtained high correlation coefficients (i.e., ranging from 0.733 to 0.940), indicating SCANS's reliability and high accuracy. The proposed SCANS algorithm can effectively obtain nighttime AOD with high quality, thereby advancing research on the diurnal variation of crucial Earth's key elements.

2.
Materials (Basel) ; 15(5)2022 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-35269008

RESUMEN

In order to monitor the synthesis processes or characterize nanoparticles for application, a new method that allows in situ determination of the two-dimensional size distribution and concentration of Au-Ag alloy nanospheroids, based on their extinction spectrum, is developed. Non-negative Tikhonov regularization and T-matrix method were used to solve the inverse problem. The effects of the two-dimensional size steps, wavelength range, and measurement errors of extinction spectrum on the retrieval results were analyzed to verify the feasibility and accuracy of the retrieval algorithm. Through comparative analysis, the size steps and wavelength range that make the retrieval error smaller are found. After adding 0.1% random noise to the extinction spectrum, a small variation in the retrieval error of the mean size is observed. The results showed that the error of the mean size is smaller than 2% and the error of the concentration is smaller than 3%. This method is simple, fast, cheap, nondestructive, and can be done in situ during the growth process of nanoparticles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA