Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Animals (Basel) ; 14(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38672374

RESUMEN

In response to the high breakage rate of pigeon eggs and the significant labor costs associated with egg-producing pigeon farming, this study proposes an improved YOLOv8-PG (real versus fake pigeon egg detection) model based on YOLOv8n. Specifically, the Bottleneck in the C2f module of the YOLOv8n backbone network and neck network are replaced with Fasternet-EMA Block and Fasternet Block, respectively. The Fasternet Block is designed based on PConv (Partial Convolution) to reduce model parameter count and computational load efficiently. Furthermore, the incorporation of the EMA (Efficient Multi-scale Attention) mechanism helps mitigate interference from complex environments on pigeon-egg feature-extraction capabilities. Additionally, Dysample, an ultra-lightweight and effective upsampler, is introduced into the neck network to further enhance performance with lower computational overhead. Finally, the EXPMA (exponential moving average) concept is employed to optimize the SlideLoss and propose the EMASlideLoss classification loss function, addressing the issue of imbalanced data samples and enhancing the model's robustness. The experimental results showed that the F1-score, mAP50-95, and mAP75 of YOLOv8-PG increased by 0.76%, 1.56%, and 4.45%, respectively, compared with the baseline YOLOv8n model. Moreover, the model's parameter count and computational load are reduced by 24.69% and 22.89%, respectively. Compared to detection models such as Faster R-CNN, YOLOv5s, YOLOv7, and YOLOv8s, YOLOv8-PG exhibits superior performance. Additionally, the reduction in parameter count and computational load contributes to lowering the model deployment costs and facilitates its implementation on mobile robotic platforms.

2.
Artif Intell Med ; 148: 102757, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38325920

RESUMEN

Semi-supervised segmentation plays an important role in computer vision and medical image analysis and can alleviate the burden of acquiring abundant expert-annotated images. In this paper, we developed a residual-driven semi-supervised segmentation method (termed RDMT) based on the classical mean teacher (MT) framework by introducing a novel model-level residual perturbation and an exponential Dice (eDice) loss. The introduced perturbation was integrated into the exponential moving average (EMA) scheme to enhance the performance of the MT, while the eDice loss was used to improve the detection sensitivity of a given network to object boundaries. We validated the developed method by applying it to segment 3D Left Atrium (LA) and 2D optic cup (OC) from the public LASC and REFUGE datasets based on the V-Net and U-Net, respectively. Extensive experiments demonstrated that the developed method achieved the average Dice score of 0.8776 and 0.7751, when trained on 10% and 20% labeled images, respectively for the LA and OC regions depicted on the LASC and REFUGE datasets. It significantly outperformed the MT and can compete with several existing semi-supervised segmentation methods (i.e., HCMT, UAMT, DTC and SASS).

3.
Zhongguo Yi Liao Qi Xie Za Zhi ; 47(3): 258-263, 2023 May 30.
Artículo en Chino | MEDLINE | ID: mdl-37288624

RESUMEN

Atrial fibrillation is a common arrhythmia, and its diagnosis is interfered by many factors. In order to achieve applicability in diagnosis and improve the level of automatic analysis of atrial fibrillation to the level of experts, the automatic detection of atrial fibrillation is very important. This study proposes an automatic detection algorithm for atrial fibrillation based on BP neural network (back propagation network) and support vector machine (SVM). The electrocardiogram (ECG) segments in the MIT-BIH atrial fibrillation database are divided into 10, 32, 64, and 128 heartbeats, respectively, and the Lorentz value, Shannon entropy, K-S test value and exponential moving average value are calculated. These four characteristic parameters are used as the input of SVM and BP neural network for classification and testing, and the label given by experts in the MIT-BIH atrial fibrillation database is used as the reference output. Among them, the use of atrial fibrillation in the MIT-BIH database, the first 18 cases of data are used as the training set, and the last 7 cases of data are used as the test set. The results show that the accuracy rate of 92% is obtained in the classification of 10 heartbeats, and the accuracy rate of 98% is obtained in the latter three categories. The sensitivity and specificity are both above 97.7%, which has certain applicability. Further validation and improvement in clinical ECG data will be done in next study.


Asunto(s)
Fibrilación Atrial , Humanos , Fibrilación Atrial/diagnóstico , Máquina de Vectores de Soporte , Frecuencia Cardíaca , Algoritmos , Redes Neurales de la Computación , Electrocardiografía
4.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-982224

RESUMEN

Atrial fibrillation is a common arrhythmia, and its diagnosis is interfered by many factors. In order to achieve applicability in diagnosis and improve the level of automatic analysis of atrial fibrillation to the level of experts, the automatic detection of atrial fibrillation is very important. This study proposes an automatic detection algorithm for atrial fibrillation based on BP neural network (back propagation network) and support vector machine (SVM). The electrocardiogram (ECG) segments in the MIT-BIH atrial fibrillation database are divided into 10, 32, 64, and 128 heartbeats, respectively, and the Lorentz value, Shannon entropy, K-S test value and exponential moving average value are calculated. These four characteristic parameters are used as the input of SVM and BP neural network for classification and testing, and the label given by experts in the MIT-BIH atrial fibrillation database is used as the reference output. Among them, the use of atrial fibrillation in the MIT-BIH database, the first 18 cases of data are used as the training set, and the last 7 cases of data are used as the test set. The results show that the accuracy rate of 92% is obtained in the classification of 10 heartbeats, and the accuracy rate of 98% is obtained in the latter three categories. The sensitivity and specificity are both above 97.7%, which has certain applicability. Further validation and improvement in clinical ECG data will be done in next study.


Asunto(s)
Humanos , Fibrilación Atrial/diagnóstico , Máquina de Vectores de Soporte , Frecuencia Cardíaca , Algoritmos , Redes Neurales de la Computación , Electrocardiografía
5.
ISA Trans ; 129(Pt B): 493-504, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35249724

RESUMEN

The present article introduces an adaptive filter of statistical basis developed for closed-loop control applications, whose goal is to reduce actuator wear while ensuring a similar control performance regarding the original closed-loop system. The main idea is to avoid the rapid change of the filtered signal when the system output has a derivative not statistically significant regarding the expected measurement noise. The adaptation law of the time constant of the filter is model-free, and the only required information is the variance of the additive noise that the measurements are subjected to. The performance of the proposed adaptive method is illustrated through a combined numerical and experimental study, in addition to its application in an operational oil plant. The results indicate that our formulation holds promise for extending the life of actuators and is easy to implement in most programmable logic controllers.

6.
Sensors (Basel) ; 17(2)2017 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-28134859

RESUMEN

Recently, due to the increasing importance of reducing severe vehicle accidents on roads (especially on highways), the automatic identification of road surface conditions, and the provisioning of such information to drivers in advance, have recently been gaining significant momentum as a proactive solution to decrease the number of vehicle accidents. In this paper, we firstly propose an information retrieval approach that aims to identify road surface states by combining conventional machine-learning techniques and moving average methods. Specifically, when signal information is received from a radar system, our approach attempts to estimate the current state of the road surface based on the similar instances observed previously based on utilizing a given similarity function. Next, the estimated state is then calibrated by using the recently estimated states to yield both effective and robust prediction results. To validate the performances of the proposed approach, we established a real-world experimental setting on a section of actual highway in South Korea and conducted a comparison with the conventional approaches in terms of accuracy. The experimental results show that the proposed approach successfully outperforms the previously developed methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA