Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Cardiovasc Magn Reson ; : 101096, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39278414

RESUMEN

BACKGROUND: Cardiovascular MRI (CMR) faces challenges due to the interference of bright fat signals in visualizing structures like coronary arteries. Effective fat suppression is crucial, especially when using whole-heart CMR techniques. Conventional methods often fall short due to rapid fat signal recovery, leading to residual fat content hindering visualization. Water-selective off-resonant radiofrequency (RF) pulses have been proposed but come with tradeoffs between pulse duration, which increases scan time, and increased RF energy deposit, which limits their applicability due to specific absorption rate (SAR) constraints. The study introduces a lipid-insensitive binomial off-resonant (LIBOR) RF pulse, which addresses concerns about SAR and scan time, and aims to provide a comprehensive quantitative comparison with published off-resonant RF pulses for CMR at 3T. METHODS: A short (1ms) LIBOR pulse, with reduced RF power requirements, was developed and implemented in a free-breathing respiratory-self-navigated 3D radial whole-heart CMR sequence at 3T. A binomial off-resonant rectangular (BORR) pulse with matched duration, as well as previously published lipid-insensitive binomial off-resonant excitation (LIBRE) pulses (1ms and 2.2ms), were implemented and optimized for fat suppression in numerical simulations and validated in volunteers (n=3). Whole-heart CMR was performed in volunteers(n=10) with all four pulses. The signal-to-noise ratio (SNR) of ventricular blood, skeletal muscle, myocardium, and subcutaneous fat and the coronary vessel detection rates and sharpness were compared. RESULTS: Experimental results validated numerical findings and near homogeneous fat suppression was achieved with all four pulses. Comparing the short RF pulses (1ms), LIBOR reduced the RF power nearly two-fold compared with LIBRE, and three-fold compared with BORR, and LIBOR significantly decreased overall fat SNR from cardiac scans, compared to LIBRE and BORR. The reduction in RF pulse duration (from 2.2ms to 1ms) shortened the whole-heart acquisition from 8.5min to 7min. No significant differences in coronary arteries detection and sharpness were found when comparing all four pulses. CONCLUSION: LIBOR pulses enabled whole-heart CMR under 7minutes at 3T, with large volume fat signal suppression, while reducing RF power compared with LIBRE and BORR pulses. LIBOR is an excellent candidate to address SAR problems encountered in CMR sequences where fat suppression remains challenging and short RF pulses are required. AVAILABILITY OF DATA AND MATERIALS: An online repository containing the anonymized human MRI raw data, as well as RF pulse shapes used in this study is publicly available at: https://zenodo.org/records/8338079(PART 1: KNEE V1-V3, HEART V1-V5) https://zenodo.org/records/10715769 (PART 2: HEART V6-V10) Matlab code to 1) simulate the different RF pulses within a GRE sequence and 2) to read and display the anonymized raw data is available from: https://github.com/QIS-MRI/LIBOR_LIBRE_BORR_SimulationCode The compiled research sequence can be requested through the Teamplay platform of Siemens Healthineers.

2.
Angew Chem Int Ed Engl ; 61(45): e202212089, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36102873

RESUMEN

Different from organic dye/quantum dot possessing one luminescent center, upconversion luminescence (UCL) is actually a statistic of temporal behaviors of countless individual activators. Our experimental results have shown that the rise and decay dynamics of UCL is directly associated with the relative contribution of sensitizer-to-activator energy transfer and energy migration among sensitizers, which can be physically modulated by simply tuning the excitation laser. Therefore, dynamic UCL with record-wide 20-fold lifetime, ≈70-fold red-to-green intensity ratio, and reversibly definable emission color is easily realized by just modulating the excitation laser. Moreover, this generally applicable strategy only requires a simplest-possible UCL system whereas prevalent material engineering such as complicated composition design, sophisticated core-shell construction, or tedious chemical synthesis, is no longer needed.

3.
Laser Ther ; 27(1): 61-64, 2018 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-29795973

RESUMEN

BACKGROUND AND AIMS: It is generally thought that bleeding from a hemangioma is difficult to stop. With development of the long pulse dye laser (LPDL), it has become possible to treat hemangioma with a large blood vessel diameter. Thus, it is effective in treating infantile hemangioma and pyogenic granuloma. MATERIALS AND METHODS: Five patients who visited our hospital from July 2015 to July 2017 due to hemorrhagic hemangioma were treated using a flash lamp excitation pulse dye laser with parameters of 7 mm spot size, 3 msec pulse width, fluence 12-14J/cm2, DCD 30 msec, and delay 30 msec. RESULTS: The bleeding not only stopped, but the raised lesion was flattened in all cases. CONCLUSIONS: LPDL is effective for both infantile hemangioma and pyogenic granuloma. It not only stops bleeding, but also treats the vascular lesions.

4.
Magn Reson Chem ; 55(9): 797-803, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28321918

RESUMEN

Pulse sequences in NMR spectroscopy sometimes require the application of pulses with effective flip angles different from 90° and 180°. Previously (Magn. Reson. Chem. 2015, 53, 886-893), offset-compensated broadband excitation pulses with RF-amplitude-dependent effective flip angles (RADFA) were introduced that are applicable in such cases. However, especially RF-amplitude-restricted RADFA pulses turned out to perform not as good as desired in terms of achievable bandwidths. Here, a class of RF-amplitude-restricted RADFA pulses with linear phase slope is introduced that allows excitation over much larger bandwidths with better performance. In this theoretical work, the basic principle of the pulse class is explained, their physical limits explored, and their properties, also compared with other pulse classes, discussed in detail. Copyright © 2017 John Wiley & Sons, Ltd.

5.
Magn Reson Chem ; 53(11): 886-93, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26259565

RESUMEN

Pulse sequences in NMR spectroscopy sometimes require the adjustment of effective flip angles with respect to experiment-specific or sample-specific parameters. Here, we present a quality factor for efficient optimization of offset-compensated broadband excitation pulses with RF amplitude-dependent effective flip angles (RADFA). After proof of principle, physical limits of RF amplitude-restricted and RF power-restricted broadband RADFA pulses are explored and corresponding pulse shapes and performances characterized in detail.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Simulación por Computador
6.
J Magn Reson ; 237: 1-10, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24125955

RESUMEN

The performance of the standard CPMG sequence in inhomogeneous fields can be improved with the use of broadband excitation and refocusing pulses. Here we introduce a new class of excitation pulses, so-called axis-matching excitation pulses, that optimize the response for a given refocusing pulse. These new excitation pulses are tailored to the refocusing pulses and take their imperfections into account. Rather than generating purely transverse magnetization, these pulses are designed to generate magnetization pointing along the axis of the effective rotation of the refocusing cycle. This approach maximizes the CPMG component and minimizes the CP component of the signal. Replacing a standard 90° pulse with a new excitation pulse matched to the 180° refocusing pulse increases the signal bandwidth and improves the echo amplitudes by 30% in inhomogeneous fields in comparison to the standard CPMG sequence. Larger gains are obtained with more advanced refocusing pulses. Recent work demonstrated that it is possible to increase the signal to noise ratio (SNR) of individual echoes by more than a factor of 1.5 (in power units) without increasing the duration or amplitude of the refocusing pulses. This was achieved by replacing the standard 180° refocusing pulse by a short phase alternating pulse and the standard 90° excitation pulse by a broadband excitation pulse. We show here that with suitable axis-matching excitation pulses, the SNR further increases by over a factor of 2. We discuss the underlying theory and present several practical implementations of purely phase modulated axis-matching excitation pulses for a number of different refocusing pulses that were derived using methods of optimal control. To gain the full benefit of these new excitation pulses, it is essential to replace the standard phase cycling scheme based on 180° phase shifts by a new scheme involving phase inversion. We tested the new pulses experimentally and observe excellent agreement with the theoretical expectations. We also demonstrate that an additional benefit of axis-matching excitation pulses is the decrease of the transient that appears in the amplitudes of the first few echoes, thus enabling better measurements of short relaxation times.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA