Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Stress Health ; : e3480, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264855

RESUMEN

The main aim of this study was to investigate adolescents' eustress-distress and mindfulness by examining mental toughness (MT) using network and mediator analyses. The study included 414 adolescents. The results showed that MT was positively related to eustress and mindfulness, but distress was negatively related to MT. Based on the network analysis findings, we tested mindfulness' mediating role in the relationship between eustress-distress and MT. The findings showed that mindfulness played a significant mediating role. However, the mediating role of mindfulness was negative for the relationship between distress and toughness and positive for eustress. These findings advance eustress, distress, and mindfulness as mechanisms for understanding the effects of MT. Considering current knowledge of MT, eustress, distress, and mindfulness, the results are discussed.

2.
Geroscience ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39294474

RESUMEN

Protein folding in the endoplasmic reticulum (ER) requires a high ratio of oxidized to reduced glutathione (GSSG/rGSH). Since the GSSG/rGSH depends on total glutathione (tGSH = GSSG + rGSH) levels, we hypothesized that limiting GSH biosynthesis will ameliorate protein misfolding by enhancing the ER oxidative milieu. As a proof-of-concept, we used DL-buthionine-(S,R)-sulfoximine (BSO) to inhibit GSH biosynthesis in Akita mice, which are prone to proinsulin misfolding. We conducted a 2-week intervention to investigate if BSO was safe and a 6-week intervention to find its effect on glucose intolerance. In both cohorts, male heterozygous Akita (AK) and wild-type (WT) mice were continuously administered 15 mM BSO. No adverse effects were observed on body weight, food intake, and water intake in either cohort. Unaltered levels of plasma aspartate and alanine aminotransferases, and cystatin-C, indicate that BSO was safe. BSO-induced decreases in tGSH were tissue-dependent with maximal effects in the kidneys, where it altered the expression of genes associated with GSH biosynthesis, redox status, and proteostasis. BSO treatment decreased random blood glucose levels to 80% and 67% of levels in untreated mice in short-term and long-term cohorts, respectively, and 6-h fasting blood glucose to 82% and 74% ï»¿of levels in untreated mice, respectively. BSO also improved glucose tolerance by 37% in AK mice in the long-term cohort, without affecting insulin tolerance. Neither glucose tolerance nor insulin tolerance were affected in WT. Data indicate that BSO might treat misfolded proinsulin-induced glucose intolerance. Future studies should investigate the effect of BSO on proinsulin misfolding and if it improves glucose intolerance in individuals with Mutant Insulin Diabetes of Youth.

3.
Phytochemistry ; 227: 114231, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39068961

RESUMEN

Plants plastically alter their metabolism in response to environmental stimuli, which induces changes in the accumulation of specialized metabolites. This ability can be utilized to manipulate plant phytochemistry in a desired direction. However, the abundance of secondary metabolites in the different plant species, especially medicinal, is enormous; therefore, it is difficult to establish a clear direction for the effects of metabolic modulators on phytochemical composition, especially given the possibility of using different types thereof. In order to gain insight into these changes, we investigated the effects of foliar-applied chitosan (ChL, 100 mg/L), selenium (Se, 10 mg/L), salicylic acid (SA, 150 mg/L), or an equal volume mixture thereof on Hypericum perforatum L. metabolism. Selenium and SA proved to be the more effective than ChL in enhancing the accumulation of phenolic compounds. The greatest increase was found in the concentration of neochlorogenic acid after Se-spraying. The treatment with the elicitors generally increased the concentration of identified flavonoids, but not the level of naphthodianthrone or phloroglucinol metabolites. The most pronounced response was observed on day 10 following the application of the compounds, and is likely the consequence of elevated levels of O2-˙, free proline, and modulated activity of enzymatic antioxidants.


Asunto(s)
Quitosano , Hypericum , Oxidación-Reducción , Ácido Salicílico , Selenio , Hypericum/química , Hypericum/metabolismo , Hypericum/efectos de los fármacos , Ácido Salicílico/farmacología , Ácido Salicílico/metabolismo , Quitosano/farmacología , Quitosano/química , Selenio/farmacología , Selenio/metabolismo , Selenio/química , Oxidación-Reducción/efectos de los fármacos , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Antioxidantes/química
4.
Plants (Basel) ; 13(7)2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38611462

RESUMEN

Plants are constantly subjected to environmental changes that deeply affect their metabolism, leading to the inhibition or synthesis of "specialized" compounds, small organic molecules that play a fundamental role in adaptative responses. In this work, Melissa officinalis L. (an aromatic plant broadly cultivated due to the large amounts of secondary metabolites) plants were exposed to realistic ozone (O3) dosages (80 ppb, 5 h day-1) for 35 consecutive days with the aim to evaluate its potential use as elicitor of specialized metabolite production. Ozone induced stomatal dysfunction throughout the whole experiment, associated with a low photosynthetic performance, a decrease in the potential energy conversion activity of PSII, and an alteration in the total chlorophyll content (-35, -36, -10, and -17% as average compared to the controls, respectively). The production of hydrogen peroxide at 7 days from the beginning of exposure (+47%) resulted in lipid peroxidation and visible injuries. This result suggests metabolic disturbance within the cell and a concomitant alteration in cell homeostasis, probably due to a limited activation of antioxidative mechanisms. Moderate accumulated doses of O3 triggered the accumulation of hydroxycinnamic acids and the up-regulation of the genes encoding enzymes involved in rosmarinic acid, phenylpropanoid, and flavonoid biosynthesis. While high accumulated doses of O3 significantly enhanced the content of hydroxybenzoic acid and flavanone glycosides. Our study shows that the application of O3 at the investigated concentration for a limited period (such as two/three weeks) may become a useful tool to stimulate bioactive compounds production in M. officinalis.

5.
J Biol Chem ; 300(4): 107159, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38479602

RESUMEN

In the present study, we examined the mitochondrial hydrogen peroxide (mH2O2) generating capacity of α-ketoglutarate dehydrogenase (KGDH) and compared it to components of the electron transport chain using liver mitochondria isolated from male and female C57BL6N mice. We show for the first time there are some sex dimorphisms in the production of mH2O2 by electron transport chain complexes I and III when mitochondria are fueled with different substrates. However, in our investigations into these sex effects, we made the unexpected and compelling discovery that 1) KGDH serves as a major mH2O2 supplier in male and female liver mitochondria and 2) KGDH can form mH2O2 when liver mitochondria are energized with fatty acids but only when malate is used to prime the Krebs cycle. Surprisingly, 2-keto-3-methylvaleric acid (KMV), a site-specific inhibitor for KGDH, nearly abolished mH2O2 generation in both male and female liver mitochondria oxidizing palmitoyl-carnitine. KMV inhibited mH2O2 production in liver mitochondria from male and female mice oxidizing myristoyl-, octanoyl-, or butyryl-carnitine as well. S1QEL 1.1 (S1) and S3QEL 2 (S3), compounds that inhibit reactive oxygen species generation by complexes I and III, respectively, without interfering with OxPhos and respiration, had a negligible effect on the rate of mH2O2 production when pyruvate or acyl-carnitines were used as fuels. However, inclusion of KMV in reaction mixtures containing S1 and/or S3 almost abolished mH2O2 generation. Together, our findings suggest KGDH is the main mH2O2 generator in liver mitochondria, even when fatty acids are used as fuel.


Asunto(s)
Ácidos Grasos , Peróxido de Hidrógeno , Complejo Cetoglutarato Deshidrogenasa , Mitocondrias Hepáticas , Animales , Femenino , Masculino , Ratones , Complejo I de Transporte de Electrón/metabolismo , Complejo III de Transporte de Electrones/metabolismo , Ácidos Grasos/metabolismo , Peróxido de Hidrógeno/metabolismo , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Ratones Endogámicos C57BL , Mitocondrias Hepáticas/metabolismo , Oxidación-Reducción
6.
Int J Mol Sci ; 25(2)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38256048

RESUMEN

The stimulation of growth and development of crops using ionising radiation (radiation hormesis) has been reported by many research groups. However, specific genes contributing to the radiation stimulation of plant growth are largely unknown. In this work, we studied the impact of the low-dose γ-irradiation of barley seeds on the growth dynamics and gene expression of eight barley cultivars in a greenhouse experiment. Our findings confirmed that candidate genes of the radiation growth stimulation, previously established in barley seedlings (PM19L-like, CML31-like, and AOS2-like), are significant in radiation hormesis throughout ontogeny. In γ-stimulated cultivars, the expression of these genes was aligned with the growth dynamics, yield parameters, and physiological conditions of plants. We identified contrasting cultivars for future gene editing and found that the γ-stimulated cultivar possessed some specific abiotic stress-responsive elements in the promotors of candidate genes, possibly revealing a new level of radiation hormesis effect execution. These results can be used in creating new productive barley cultivars, ecological toxicology of radionuclides, and eustress biology studies.


Asunto(s)
Hordeum , Hordeum/genética , Hormesis , Productos Agrícolas , Ecotoxicología , Rayos gamma
7.
Int J Toxicol ; 43(2): 196-208, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38151260

RESUMEN

This commentary discusses the implementation of fasting in nonclinical animal experimental subjects. The short-term removal of food from cages of experimental animals is in all respects innocuous. The term "stress" is ill-defined and the statutes and regulations governing animal research laboratories that exert their authority in the performance of their operations do so without substantive grounds to base compliance. The legislative and administrative history of the implementation of the Animal Welfare Act (AWA) has evolved into the development of laboratory management strategies that focus on the reduction of the biological cost of stress to the animals and the determination of when subclinical stress (eustress) becomes distress. Animal welfare is based on the tenet that in laboratories conducting animal research in compliance with Good Laboratory Practices (Title 21 USC, Chapter 13,§58), it is the study protocol and the study director that establish procedures and processes that are approved by each Institutional Animal Care and Use Committee to ensure the humane care and use of animals in research, teaching, and testing and to ensure compliance with guidelines and regulations. This approval process establishes the justification of eustress in the environment that do not rise to the threshold of distress under the AWA.


Asunto(s)
Comités de Atención Animal , Experimentación Animal , Humanos , Animales , Animales de Laboratorio , Bienestar del Animal , Ayuno
8.
Antioxidants (Basel) ; 12(12)2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38136222

RESUMEN

Reactive oxygen species (ROS) are the initiators in foods and in the stomach of oxidized dietary lipids, proteins, and lipid-oxidation end-products (ALEs), inducing in humans the development of several chronic diseases and cancer. Epidemiological, human clinical and animal studies supported the role of dietary polyphenols and derivatives in prevention of development of such chronic diseases. There is much evidence that polyphenols/derivatives at the right timing and concentration, which is critical, acts mostly in the aerobic stomach and generally in the gastrointestinal tract as reducing agents, scavengers of free radicals, trappers of reactive carbonyls, modulators of enzyme activity, generators of beneficial gut microbiota and effectors of cellular signaling. In the blood system, at low concentration, they act as generators of electrophiles and low concentration of H2O2, acting mostly as cellular signaling, activating the PI3K/Akt-mediated Nrf2/eNOS pathways and inhibiting the inflammatory transcription factor NF-κB, inducing the cells, organs and organism for eustress, adaptation and surviving.

9.
Sensors (Basel) ; 23(21)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37960394

RESUMEN

This research pioneers the application of a machine learning framework to predict the perceived productivity of office workers using physiological, behavioral, and psychological features. Two approaches were compared: the baseline model, predicting productivity based on physiological and behavioral characteristics, and the extended model, incorporating predictions of psychological states such as stress, eustress, distress, and mood. Various machine learning models were utilized and compared to assess their predictive accuracy for psychological states and productivity, with XGBoost emerging as the top performer. The extended model outperformed the baseline model, achieving an R2 of 0.60 and a lower MAE of 10.52, compared to the baseline model's R2 of 0.48 and MAE of 16.62. The extended model's feature importance analysis revealed valuable insights into the key predictors of productivity, shedding light on the role of psychological states in the prediction process. Notably, mood and eustress emerged as significant predictors of productivity. Physiological and behavioral features, including skin temperature, electrodermal activity, facial movements, and wrist acceleration, were also identified. Lastly, a comparative analysis revealed that wearable devices (Empatica E4 and H10 Polar) outperformed workstation addons (Kinect camera and computer-usage monitoring application) in predicting productivity, emphasizing the potential utility of wearable devices as an independent tool for assessment of productivity. Implementing the model within smart workstations allows for adaptable environments that boost productivity and overall well-being among office workers.


Asunto(s)
Dispositivos Electrónicos Vestibles , Humanos , Muñeca/fisiología , Programas Informáticos , Aprendizaje Automático , Extremidad Superior
10.
J Biol Chem ; 299(12): 105399, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37898400

RESUMEN

Pyruvate dehydrogenase (PDH) and α-ketoglutarate dehydrogenase (KGDH) are vital entry points for monosaccharides and amino acids into the Krebs cycle and thus integral for mitochondrial bioenergetics. Both complexes produce mitochondrial hydrogen peroxide (mH2O2) and are deactivated by electrophiles. Here, we provide an update on the role of PDH and KGDH in mitochondrial redox balance and their function in facilitating metabolic reprogramming for the propagation of oxidative eustress signals in hepatocytes and how defects in these pathways can cause liver diseases. PDH and KGDH are known to account for ∼45% of the total mH2O2 formed by mitochondria and display rates of production several-fold higher than the canonical source complex I. This mH2O2 can also be formed by reverse electron transfer (RET) in vivo, which has been linked to metabolic dysfunctions that occur in pathogenesis. However, the controlled emission of mH2O2 from PDH and KGDH has been proposed to be fundamental for oxidative eustress signal propagation in several cellular contexts. Modification of PDH and KGDH with protein S-glutathionylation (PSSG) and S-nitrosylation (PSNO) adducts serves as a feedback inhibitor for mH2O2 production in response to glutathione (GSH) pool oxidation. PSSG and PSNO adduct formation also reprogram the Krebs cycle to generate metabolites vital for interorganelle and intercellular signaling. Defects in the redox modification of PDH and KGDH cause the over generation of mH2O2, resulting in oxidative distress and metabolic dysfunction-associated fatty liver disease (MAFLD). In aggregate, PDH and KGDH are essential platforms for emitting and receiving oxidative eustress signals.


Asunto(s)
Hepatocitos , Peróxido de Hidrógeno , Complejo Cetoglutarato Deshidrogenasa , Mitocondrias Hepáticas , Complejo Piruvato Deshidrogenasa , Peróxido de Hidrógeno/metabolismo , Complejo Cetoglutarato Deshidrogenasa/química , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Complejo Piruvato Deshidrogenasa/química , Complejo Piruvato Deshidrogenasa/metabolismo , Humanos , Hepatocitos/enzimología , Mitocondrias Hepáticas/metabolismo , Enfermedad del Hígado Graso no Alcohólico/enzimología , Animales , Ratones
11.
Trends Ecol Evol ; 38(10): 905-906, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37365101
12.
Front Psychol ; 14: 1144767, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37213394

RESUMEN

Introduction: The popularity of online learning provides higher education institutions with opportunities to deliver remote educational programs for international students who remain in their home countries but enroll in overseas universities. Yet the voices of offshore international students (OISs) have been rarely heard. This study focuses on the stress experiences of OISs, aiming to investigate the perception of stressors, specific responses, and stress management strategies pertaining to distress (negative stress) and eustress (positive stress). Methods: Semi-structured interviews were conducted in two phases with 18 Chinese postgraduate OISs enrolled in a range of institutions and disciplines. Interviews took place online and were analyzed thematically to explore participants' experiences. Results: Stress was found to originate from both socially- and task-based factors, closely related to participants' need to integrate into their on-campus community and gain useful knowledge and skills. Particular sources of stress were associated with distinct perceptions and subsequent responses and management strategies. Discussion: A summarizing theoretical model is offered to highlight the separate construct of distress and eustress, indicating tentative causal relationships to extend existing stress models to an educational context and provide new insights into OISs. Practical implications are identified and recommendations are provided for policy-makers, teachers, and students.

13.
Behav Sci (Basel) ; 13(3)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36975244

RESUMEN

PURPOSE: This article aims to illustrate that stress is not always a negative experience as it can have both positive and negative outcomes. The term "eustress" describes positive stress, while the term "distress" describes negative stress. To date, research on eustress is in the infancy stage. There are approximately 306 items that can be found in the Web of Science core collection for "eustress", while there are 184,714 items found for "distress". Few studies have examined the relationship between presenteeism, stress, and innovative behavior. Thus, the mechanism underlying this pathway still needs to be fully understood. MATERIALS AND METHODS: A survey was conducted among 350 medical healthcare professionals from Pakistan. With the help of SPSS and AMOS, the data were analyzed and the combined effects of the variables were also investigated. RESULTS: According to the current study, a mediation effect has been observed between innovative behavior and stress (eustress and distress). However, supervisor support moderates the relationship between stress and presenteeism and, likewise, between presenteeism and innovative behavior. CONCLUSION: Our analysis of variables establishes empirically robust relationships between the innovative behavior of medical healthcare professionals and the two different dimensions of stress. In addition, it describes a hypothetical alternative situation that explains how employees' innovative work behavior is affected by eustress and distress in the presence of supervisor support. This study could have implications for improving medical healthcare professionals' ability to incorporate innovative behavior into their practice in an effective manner in the future.

14.
J Clin Med ; 12(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36769818

RESUMEN

The production of reactive oxygen species (ROS) in the brain is homeostatically controlled and contributes to normal neural functions. Inefficiency of control mechanisms in brain aging or pathological conditions leads to ROS overproduction with oxidative neural cell damage and degeneration. Among the compounds showing therapeutic potential against neuro-dysfunctions induced by oxidative stress are the guanine-based purines (GBPs), of which the most characterized are the nucleoside guanosine (GUO) and the nucleobase guanine (GUA), which act differently. Indeed, the administration of GUO to in vitro or in vivo models of acute brain injury (ischemia/hypoxia or trauma) or chronic neurological/neurodegenerative disorders, exerts neuroprotective and anti-inflammatory effects, decreasing the production of reactive radicals and improving mitochondrial function via multiple molecular signals. However, GUO administration to rodents also causes an amnesic effect. In contrast, the metabolite, GUA, could be effective in memory-related disorders by transiently increasing ROS production and stimulating the nitric oxide/soluble guanylate cyclase/cGMP/protein kinase G cascade, which has long been recognized as beneficial for cognitive function. Thus, it is worth pursuing further studies to ascertain the therapeutic role of GUO and GUA and to evaluate the pathological brain conditions in which these compounds could be more usefully used.

15.
Curr Med Chem ; 30(34): 3927-3939, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36503393

RESUMEN

Reactive species (RS) are produced in aerobic and anaerobic cells at different concentrations and exposure times, which may trigger diverse responses depending on the cellular antioxidant potential and defensive devices. Study searches were carried out using the PubMed database of the National Library of Medicine-National Institutes of Health. Cellular RS include reactive oxygen (ROS), nitrogen (RNS), lipid (RLS) and electrophilic species that determine either cell homeostasis or dysfunctional biomolecules. The complexity of redox signalling is associated with the variety of RS produced, the reactivity of the target biomolecules with RS, the multiplicity of the counteracting processes available, and the exposure time. The continuous distortion in the prooxidant/ antioxidant balance favoring the former is defined as oxidative stress, whose intensity determines (i) the basal not harmful unbalance (oxidative eustress) at RS levels in the pM to nM range that supports physiological processes (e.g., immune function, thyroid function, insulin action) and beneficial responses to external interventions via redox signalling; or (ii) the excessive, toxic distortion (oxidative distress) at RS levels exceeding those in the oxidative eustress zone, leading to the unspecific oxidation of biomolecules and loss of their functions causing cell death with associated pathological states. The cellular redox imbalance is a complex phenomenon whose underlying mechanisms are beginning to be understood, although how RS initiates cell signalling is a matter of debate. Knowledge of this aspect will provide a better understanding of how RS triggers the pathogenesis and progression of the disease and uncover future therapeutic measures.


Asunto(s)
Antioxidantes , Estrés Oxidativo , Humanos , Antioxidantes/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
16.
Plants (Basel) ; 11(24)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36559556

RESUMEN

Agriculture needs to decrease the use of agrochemicals due to their high toxicity and adopt new strategies to achieve sustainable food production. Therefore, nanoparticles (NPs) and plant growth-promoting bacteria (PGPB) have been proposed as viable strategies to obtain better crop yields with less environmental impact. Here, we describe the effect of silica nanoparticles (SiO2-NPs) on survival, antioxidant enzymatic activity, phosphate solubilization capacity, and gibberellin production of Bacillus cereus-Amazcala (B.c-A). Moreover, the effect of the co-application of SiO2-NPs and B.c-A on seed germination, physiological characteristics, and antioxidant enzymatic activity of chili pepper plants was investigated under greenhouse conditions. The results indicated that SiO2-NPs at 100 ppm enhanced the role of B.c-A as PGPB by increasing its phosphate solubilization capacity and the production of GA7. Moreover, B.c-A catalase (CAT) and superoxide dismutase (SOD) activities were increased with SiO2-NPs 100 ppm treatment, indicating that SiO2-NPs act as a eustressor, inducing defense-related responses. The co-application of SiO2-NPs 100 ppm and B.c-A improved chili pepper growth. There was an increase in seed germination percentage, plant height, number of leaves, and number and yield of fruits. There was also an increase in CAT and PAL activities in chili pepper plants, indicating that bacteria-NP treatment induces plant immunity.

17.
BMC Psychol ; 10(1): 261, 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36357950

RESUMEN

The aims explored the associations between stress, personality and coping on student mental health and compared defensive-pessimism and optimism as influences on learning motivation. Most research construes 'stress' as 'distress', with little attempt to measure the stress that enhances motivation and wellbeing. Undergraduate psychology students (N = 162) were surveyed on student and pandemic-related stressors, personality, support, control, mental health and learning motivation. Overall, adverse mental health was high and the lack of motivation acute. While positive ratings of teaching and optimistic thinking were associated with good mental health, context control was key. Adverse ratings of teaching quality lowered learning motivation. Support and conscientiousness bolstered learning motivation and conscientiousness buffered against the adverse impact of stress on motivation. Openness was associated with the stress involved in learning. For those anxious-prone, defensive-pessimism was as effective as optimism was in stimulating learning motivation. Developing context control, support and strategies linked to personality could bolster student resilience during and post Covid-19.


Asunto(s)
COVID-19 , Motivación , Humanos , Universidades , Salud Mental , Pandemias , COVID-19/epidemiología , Personalidad , Adaptación Psicológica , Estudiantes/psicología
18.
Front Plant Sci ; 13: 974018, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36237501

RESUMEN

Cannabis (Cannabis sativa) flourishes under high light intensities (LI); making it an expensive commodity to grow in controlled environments, despite its high market value. It is commonly believed that cannabis secondary metabolite levels may be enhanced both by increasing LI and exposure to ultraviolet radiation (UV). However, the sparse scientific evidence is insufficient to guide cultivators for optimizing their lighting protocols. We explored the effects of LI and UV exposure on yield and secondary metabolite composition of a high Δ9-tetrahydrocannabinol (THC) cannabis cultivar 'Meridian'. Plants were grown under short day conditions for 45 days under average canopy photosynthetic photon flux densities (PPFD, 400-700 nm) of 600, 800, and 1,000 µmol m-2 s-1, provided by light emitting diodes (LEDs). Plants exposed to UV had PPFD of 600 µmol m-2 s-1 plus either (1) UVA; 50 µmol m-2 s-1 of UVA (315-400 nm) from 385 nm peak LEDs from 06:30 to 18:30 HR for 45 days or (2) UVA + UVB; a photon flux ratio of ≈1:1 of UVA and UVB (280-315 nm) from a fluorescent source at a photon flux density of 3.0 µmol m-2 s-1, provided daily from 13:30 to 18:30 HR during the last 20 days of the trial. All aboveground biomass metrics were 1.3-1.5 times higher in the highest vs. lowest PPFD treatments, except inflorescence dry weight - the most economically relevant parameter - which was 1.6 times higher. Plants in the highest vs. lowest PPFD treatment also allocated relatively more biomass to inflorescence tissues with a 7% higher harvest index. There were no UV treatment effects on aboveground biomass metrics. There were also no intensity or UV treatment effects on inflorescence cannabinoid concentrations. Sugar leaves (i.e., small leaves associated with inflorescences) of plants in the UVA + UVB treatment had ≈30% higher THC concentrations; however, UV did not have any effect on the total THC in thesefoliar tissues. Overall, high PPFD levels can substantially increase cannabis yield, but we found no commercially relevant benefits of adding UV to indoor cannabis production.

19.
Biomol Ther (Seoul) ; 30(6): 570-575, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36261216

RESUMEN

Stress breaks body balance, which can cause diverse physiological disorders and worsen preexisting diseases. However, recent studies have reported that controllable stress and overcoming from stress reinforce resilience to resist against more intense stress afterwards. In this study, we investigated the protective effect of corticosterone (CORT), a representative stress hormone against hydrogen peroxide (H2O2)-induced neuronal cell death and its underlying molecular mechanism in SH-SY5Y cells, a human neuroblastoma cell line. The decreased cell viability by H2O2 was effectively restored by the pretreatment with low concentration of CORT (0.03 µM for 72 h) in the cells. H2O2-increased expression of apoptotic markers such as PUMA and Bim was decreased by CORT pretreatment. Furthermore, pretreatment of CORT attenuated H2O2-mediated oxidative damages by upregulation of antioxidant enzymes via activation of nuclear factor erythroid 2-related factor 2 (Nrf2). These findings suggest that low concentration of CORT with eustressed condition enhances intracellular self-defense against H2O2-mediated oxidative cell death, suggesting a role of low concentration of CORT as one of key molecules for resilience and neuronal cell survival.

20.
Front Plant Sci ; 13: 1023636, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36304397

RESUMEN

The efficient use of natural resources without negative repercussions to the environment has encouraged the incursion of nanotechnology to provide viable alternatives in diverse areas, including crop management. Agriculture faces challenges due to the combination of different abiotic stresses where nanotechnology can contribute with promising applications. In this context, several studies report that the application of nanoparticles and nanomaterials positively affects crop productivity through different strategies such as green synthesis of nanoparticles, plant targeted protection through the application of nanoherbicides and nanofungicides, precise and constant supply of nutrients through nanofertilizers, and tolerance to abiotic stress (e.g., low or high temperatures, drought, salinity, low or high light intensities, UV-B, metals in soil) by several mechanisms such as activation of the antioxidant enzyme system that alleviates oxidative stress. Thus, the present review focuses on the benefits of NPs against these type of stress and their possible action mechanisms derived from the interaction between nanoparticles and plants, and their potential application for improving agricultural practices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA