Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Biol Macromol ; 279(Pt 3): 135499, 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39255888

RESUMEN

Cationic Manihot esculenta (ME) peel starch was synthesized through etherification method using 3-chloro-2-hydroxypropyl trimethylammonium chloride (CHPTAC) as cationizing monomer. The optimization of the main factors influencing the degree of substitution (DS) was conducted using central composite design (CCD) and response surface methodology (RSM). The factors assessed include CHPTAC concentration, catalyst sodium hydroxide (NaOH) concentration, and reaction time. The DS values of the cationic starches were obtained between 0.39 and 0.99. The maximum DS value was up to 0.99 at 0.615 mol/L of CHPTAC, 30 % (w/v) NaOH, and a reaction time of 5 h. The finding based on the optimization using RSM reflected that CHPTAC and NaOH concentrations are the key variables determining the DS value, while reaction time has a negligible impact on the etherification process. Furthermore, the chemical composition, morphology, and structure of the cationic ME peel starch were characterized by scanning electron microscopy with energy dispersive X-ray spectrometry (SEM-EDX), Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD) and nuclear magnetic resonance spectroscopy (1H NMR). It was confirmed that the modifying monomers penetrated the surface layer of the starch granules and attached to the starch backbone.

2.
Angew Chem Int Ed Engl ; : e202412181, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39155679

RESUMEN

An enantio- and regioconvergent allylation of phenols under nickel catalysis with an α-/γ-regioisomeric mixture of racemic silylated/germylated allylic chlorides is reported. The silyl/germyl group governs the regioselectivity, and the transformation affords enantiomerically enriched unsymmetrical 1,3-disubstituted allyl aryl ethers with great regiocontrol in good yields and with excellent enantioselectivities. Notably, no nickel-mediated C-O bond activation is observed at room temperature. The synthetic value of these densely functionalized silicon-containing building blocks is demonstrated in a series of chemoselective transformations, including a [3,3]-sigmatropic rearrangement for the construction of an α-chiral silane.

3.
Materials (Basel) ; 17(13)2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38998155

RESUMEN

This paper describes studies on the preparation of an o-cresol-furfural-formaldehyde resin in the presence of an alkaline catalyst and its modification with n-butanol or 2-ethylhexanol. The novelty of this research is to obtain a furfural-based resin of the resole type and its etherification. Such resins are not described in the literature and also are not available on the market. The obtained resin based on furfural, which can be obtained from agricultural waste, had a low minimum content of free o-cresol < 1 wt.%, furfural < 0.1 wt.%, and formaldehyde < 0.1 wt.%. The resin structure was characterized by mass spectrometry (ESI-MS), FT-IR, and NMR spectroscopy, which showed the presence of hydroxymethylene groups in the resin before modification and alkyl groups derived from n-butanol and 2-ethylhexanol after modification. The etherified resins had a lower viscosity and were more flexible (DSC) than the resin before modification and they can be used as an environmentally friendly, safe, and sustainable alternative to traditional phenol-formaldehyde resins in the paint industry. They demonstrate the ability to create a protective coating with good adherence to metal substrates and an excellent balance of flexibility and hardness.

4.
Polymers (Basel) ; 16(13)2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-39000629

RESUMEN

Based on organophosphorus branched polyols (AEPAs) synthesized using triethanolamine (TEOA), ortho-phosphoric acid (OPA), and polyoxyethylene glycol with MW = 400 (PEG), vapor-permeable polyurethane ionomers (AEPA-PEG-PUs) were obtained. During the synthesis of AEPAs, the reaction of the OPA etherification with polyoxyethylene glycol was studied in a wide temperature range and at different molar ratios of the starting components. It turned out that OPA simultaneously undergoes a catalytically activated etherification reaction with triethanolamine and PEG. After TEOA is fully involved in the etherification reaction, excess OPA does not react with the terminal hydroxyl groups of AEPA-PEG or the remaining amount of PEG. The ortho-phosphoric acid remaining in an unreacted state is involved in associative interactions with the phosphate ions of the AEPA. Increasing the synthesis temperature from 40 °C to 110 °C leads to an increase in OPA conversion. However, for the AEPA-PEG-PU based on AEPA-PEG obtained at 100 °C and 110 °C, ortho-phosphoric acid no longer enters into associative interactions with the phosphate ions of the AEPA. Due to the hydrophilicity of polyoxyethylene glycol, the presence of phosphate ions in the polyurethane structure, and their associative binding with the unreacted ortho-phosphoric acid, the diffusion of water molecules in polyurethanes is enhanced, and high values of vapor permeability and tensile strength were achieved.

5.
Molecules ; 29(7)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38611901

RESUMEN

A facile and eco-friendly approach using in situ-generated 4-benzenediazonium sulfonate (BDS) was applied to prepare highly functionalized carbon nanotubes (CNTs). The effectiveness of this functionalization was additionally enhanced by a green and short-time ball milling process applied beforehand. The obtained BDS-modified CNTs presented significant activity in glycerol etherification, producing tert-butyl glycerol ethers, which are considered promising fuel additives. Excellent results of ~56% glycerol conversion and ~10% yield of higher-substituted tert-butyl glycerol ethers were obtained within just 1 h of reaction at 120 °C using a low catalyst loading of only 2.5 wt.%. Furthermore, the sulfonated CNTs were reusable over several reaction cycles, with only a minor decrease in activity. Additionally, the sample activity could be restored by a simple regeneration approach. Finally, a clear correlation was found between the content of -SO3H groups on the surface of CNTs and the catalytic performances of these materials in glycerol etherification. Improved interaction between functionalized ball-milled CNTs and the reactants was also suggested to positively affect the activity of these catalysts in the tested process.

6.
Angew Chem Int Ed Engl ; 63(20): e202402370, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38426853

RESUMEN

In contrast to the well-documented acylating reactivity, the alkylating reactivity of the alkoxycarbonyl group, as signified by its oxocarbenium-like resonance structure, remains almost unexplored. Herein, the first series of Co/Ni dinuclear metalloesters exhibiting the novel oxocarbenium-like alkoxycarbonyl groups were synthesized and characterized. In these deformed alkoxycarbonyl groups, the Ccarbonyl-Oalkoxyl bonds were contracted to 1.177(11)~1.191(9) Šwith the elongations of the Ccarbonyl=Ocarbonyl bonds to 1.368(13)~1.441(9) Å. Meanwhile, the O-Calkyl bonds were also elongated to 1.522(11) ~1.607(15) Å, and were by far the longest O-Calkyl bonds reported for alkoxycarbonyl groups. As triggered by the long O-Calkyl distances, the alkylating reactivity of the oxocarbenium-like methoxycarbonyl group towards a series of C/N/O-nucleophiles via the rare BAL2 mechanism at ambient conditions was examined. Furthermore, the homo-etherifications of alcohols mediated by the Co/Ni dinuclear metalloesters were investigated. The yields followed the trend ethanol≫n-propanol≫n-butanol ≈n-pentanol, that closely related to the structure features of the alkoxycarbonyl groups in corresponding metalloesters: while the ethoxycarbonyl group showed the reactive oxocarbenium-like framework, the n-propoxycarbonyl group displayed the dioxocarbenium-like skeleton with a shorter O-Calkyl bond; In comparison, the classical frameworks with unactivated alkyl moieties were observed for n-butoxycarbonyl and n-pentoxycarbonyl groups.

7.
Carbohydr Polym ; 331: 121846, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38388051

RESUMEN

To further our understanding of a thermoplastic arabinoxylan (AX) material obtained through an oxidation-reduction-etherification pathway, the role of the initial arabinose:xylose ratio on the material properties was investigated. Compression molded films with one molar substitution of butyl glycidyl ether (BGE) showed markedly different tensile behaviors. Films made from low arabinose AX were less ductile, while those made from high arabinose AX exhibited elastomer-like behaviors. X-ray scattering confirmed the presence of nanostructure formation resulting in nano-domains rich in either AX or BGE, from side chain grafting. The scattering data showed variations in the presence of ordered structures, nano-domain sizes and their temperature response between AX with different arabinose contents. In dynamic mechanical testing, three transitions were observed at approximately -90 °C, -50 °C and 80 °C, with a correlation between samples with more structured nano-domains and those with higher onset transition temperatures and lower storage modulus decrease. The mechanical properties of the final thermoplastic AX material can therefore be tuned by controlling the composition of the starting material.

8.
Entramado ; 19(2)dic. 2023.
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1534438

RESUMEN

Supercritical transesterification has emerged as a readily available alternative for biodiesel production since no catalyst is required, thereby generating fewer waste products. In this research, the supercritical transesterification of refined vegetable oil and aqueous ethanol was carried out at temperatures 400 to 480 °C and a 12:1 ethanol to oil molar ratio, to assess the effect of temperature and residence time in the formation of a homogeneous phase, effluent appearance and increased water content derived from glycerol etherification. The results showed that water was produced at temperatures higher than 400 °C, as expected from the occurrence of glycerol etherification, and that prolonged times resulted in gas and soot formation, indicating esters decomposition. Through water mass balances, it was possible to identify the set of operation conditions in which the water formed from glycerol etherification matched with the maximum expected according to the proposed reaction scheme.


La transesterificación supercrítica se ha propuesto como una alternativa para la producción de biodiesel ya que no requiere catalizador de esta manera se generan menos residuos. En esta investigación, la transesterificación supercrítica de aceite vegetal refinado y etanol acuoso se llevó a cabo a temperaturas en el rango 400 a 480 °C y relación molar etanol a aceite de 12:1, para evaluar el efecto de la temperatura y el tiempo de residencia en la formación de una fase homogénea, apariencia del efluente e incremento del contenido de agua resultado de las reacciones de eterificación del glicerol. Los resultados mostraron que se produjo agua a temperaturas mayores a 400°C, atribuida a la eterificación del glicerol, y que tiempos de residencia prolongados resultaron en formación de gas y hollín, indicativo de reacciones de descomposición de esteres. A través de balances de masa, fue posible identificar el conjunto de condiciones de operación a las cuales el agua formada por la eterificación del glicerol coincide con el valor máximo esperado de acuerdo con el esquema de reacción propuesto.


A transesterificação supercrítica foi proposta como uma alternativa para a produção de biodiesel porque não requer catalisador e, dessa forma, gera menos resíduos. Nesta pesquisa, a transesterificação supercrítica de aceite vegetal refinado e etanol acuoso foi conduzida a temperaturas entre 400 e 480 °C e uma relação molar de etanol e aceite de 12: 1, para avaliar o efeito da temperatura e do tempo de residência na formação de uma fase homogênea, apariência do efluente e aumento do conteúdo de água resultante das reações de eterificação do glicerol. Os resultados mostraram que se produziu água a temperaturas maiores que 400°C, atribuída à eterificação do glicerol, e que os tempos de residência prolongados resultaram na formação de gás e hollín, indicativo de reações de decomposição de ésteres. Por meio de balanças de massa, foi possível identificar o conjunto de condições de operação em que a água formada pela eterificação do glicerol coincide com o valor máximo esperado de acordo com o esquema de reação proposto.

9.
Angew Chem Int Ed Engl ; 62(52): e202310540, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37926921

RESUMEN

ortho-Aminophenols are aromatic derivatives featuring vicinal N- and O-based functionalities commonly found in the structures of many high-value materials. These molecules are generally prepared using multistep strategies that follow the rules of electrophilic aromatic substitution (SE Ar) chemistry. Despite their high fidelity, such approaches cannot target substrates featuring a "contra-SE Ar" arrangement of N- and O-groups. Here we report an alternative strategy for the preparation of such ortho-aminophenols using aryl azides as the precursors. The process utilizes low-energy photoexcitation to trigger the decomposition of aryl azides into singlet nitrenes that undergo a dearomative-rearomative sequence. This allows the incorporation of alcoholic nucleophiles into a seven-membered ring azepine intermediate via temporary disruption of aromaticity, followed by electrophile-induced re-aromatization. The net retrosynthetic logic is that the alcohol displaces the azide, which, in turn, moves to its ortho position and furthermore is converted into an amide. The synthetic value and complementarity of this strategy has been demonstrated by the coupling of aryl azides with complex, drug-like alcohols and phenols as well as amines, thiols and thiophenols, which provides a general platform for the fast and selective heterofunctionalization of aromatics.

10.
Chemistry ; 29(71): e202302983, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-37794822

RESUMEN

Ongoing advances in CuII -catalyzed aerobic oxidative coupling reactions between arylboronic esters and diverse heteroatom nucleophiles have strengthened the development of the general Chan-Lam (CL)-based reaction protocol, including C-O bond formation methodologies. In-depth mechanistic understanding of CL etherification with specific emphasis on different reaction routes and their energetics are still lacking, even though the reaction has been experimentally explored. Here, we present a DFT-guided computational study to unravel the mechanistic pathways of CL-based etherification. The computational findings provide some interesting insights into the fundamental steps of the catalytic cycle, particularly the rate-determining transmetalation event. An aryl boronic ester-coordinated, methoxide-bridged CuII intermediate that acts as resting state undergoes transmetalation with an activation barrier of 20.4 kcal mol-1 . The energy spans of the remaining fundamental steps leading to the methoxylated product are relatively low. The minor p-cresol product requires an additional 14.2 kcal mol-1 energy span to surmount in comparison to the favored route. Hammett studies for the substituted aryl boronic esters reveal higher reaction turnovers for electron-rich aryl systems. The results agree with previously reported spectroscopic and kinetic observations. For a series of alcohol substrates, it was observed that, except for cyclohexanol, moderate to high etherification turnovers are predicted.

11.
Chem Asian J ; 18(16): e202300377, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37364174

RESUMEN

Etherification of chloroheteroarenes was performed at low temperatures under metal-free, ligand-free and base-free conditions, that is, the reaction is promoted by the cooperative effect of DMSO (solvent) as a promoter and K3 PO4 providing the catalytic surface (rather than a base). The protocol exhibits good substrate scope under mild reaction conditions and has also been explored mechanistically.

12.
Nanomaterials (Basel) ; 13(9)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37177034

RESUMEN

Nanocellulose (NC) isolated from natural cellulose resources, which mainly includes cellulose nanofibril (CNF) and cellulose nanocrystal (CNC), has garnered increased attention in recent decades due to its outstanding physical and chemical properties. Various chemical modifications have been developed with the aim of surface-modifying NC for highly sophisticated applications. This review comprehensively summarizes the chemical modifications applied to NC so far in order to introduce new functionalities to the material, such as silanization, esterification, oxidation, etherification, grafting, coating, and others. The new functionalities obtained through such surface-modification methods include hydrophobicity, conductivity, antibacterial properties, and absorbability. In addition, the incorporation of NC in some functional materials, such as films, wearable sensors, cellulose nanospheres, aerogel, hydrogels, and nanocomposites, is discussed in relation to the tailoring of the functionality of NC. It should be pointed out that some issues need to be addressed during the preparation of NC and NC-based materials, such as the low reactivity of these raw materials, the difficulties involved in their scale-up, and their high energy and water consumption. Over the past decades, some methods have been developed, such as the use of pretreatment methods, the adaptation of low-cost starting raw materials, and the use of environmentally friendly chemicals, which support the practical application of NC and NC-based materials. Overall, it is believed that as a green, sustainable, and renewable nanomaterial, NC is will be suitable for large-scale applications in the future.

13.
Chem Asian J ; 17(24): e202200848, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36278824

RESUMEN

Herein, we report an efficient and rapid synthetic methodology to access diversely substituted oxa-cages from unactivated olefinic substrates derived from endo-norbornenes by employing Lewis acid- (BF3 ⋅ OEt2 ) or base (NaH)-promoted intramolecular etherification. Although both BF3 ⋅ OEt2 and NaH are found to be efficient for this transformation, slightly better yields and less reaction times are achieved with NaH/DMF (0.25-1 h at 100 °C) as compared to BF3 ⋅ OEt2 /DCM (2-3 h at 0 °C to rt). The evolution of this intramolecular cyclization was studied by time-dependent NMR studies in CDCl3 solvent. Further, these observations are supported by infrared (IR) spectral data. It is worth mentioning that the present methodology enables a new route to assemble highly fused oxa-cage systems by choosing suitably substituted oxa-cage compounds for the olefin-metathesis sequence. The highly fused oxa-cage systems may have potential applications in high-energy-density materials (HEDMs) and supramolecular chemistry.


Asunto(s)
Alquenos , Ácidos de Lewis , Alquenos/química , Estereoisomerismo , Estructura Molecular , Ciclización , Ácidos de Lewis/química
14.
Front Chem ; 10: 962355, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35936101

RESUMEN

The palladium-catalyzed decarboxylative reactions of phenols and vinyl ethylene carbonate to produce allylic aryl ethers under mild conditions have been established. Adopting an inexpensive PdCl2(dppf) catalyst promotes the efficient conversion of phenols to the corresponding allylic aryl ethers via the formation of a new C-O bond in good isolated yields with complete regioselectivities, acceptable functional group tolerance and operational simplicity. The robust procedure could be completed smoothly by conducting a scaled-up reaction with comparable efficiency to afford the target product.

15.
Proc Natl Acad Sci U S A ; 119(32): e2208938119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35930662

RESUMEN

A unified synthetic route for the total syntheses of eribulin and a macrolactam analog of halichondrin B is described. The key to the success of the current synthetic approach includes the employment of our reverse approach for the construction of cyclic ether structural motifs and a modified intramolecular cyclization reaction between alkyl iodide and aldehyde functionalities to establish the all-carbon macrocyclic framework of eribulin. These syntheses, together with our previous work on the total syntheses of halichondrin B and norhalichondrin B, demonstrate and validate the powerful reverse approach in the construction of cyclic ether structural motifs. On the other hand, the unified synthetic strategy for the synthesis of the related macrolactam analog provides inspiration and opportunities in the halichondrin field and related polycyclic ether areas.


Asunto(s)
Éteres Cíclicos , Furanos , Cetonas , Macrólidos , Éteres Cíclicos/síntesis química , Furanos/síntesis química , Cetonas/síntesis química , Macrólidos/síntesis química
16.
Polymers (Basel) ; 14(16)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36015551

RESUMEN

The etherification reaction of ortho-phosphoric acid (OPA) with polyoxypropylene glycol in the presence of tertiary amines was studied. The reaction conditions promoting the catalytic activity of triethanolamine (TEOA) and triethylamine (TEA) in the low-temperature etherification of OPA were established. The catalytic activity of TEOA and TEA in the etherification reaction of phosphoric acid is explained by the hydrophobic-hydrophilic interactions of TEA with PPG, leading, as a result of collective interactions, to a specific orientation of polyoxypropylene chains around the tertiary amine. When using triethylamine, complete etherification of OPA occurs, accompanied by the formation of branched OPA ethers terminated by hydroxyl groups and even the formation of polyphosphate structures. When triethanolamine is used as a catalyst, incomplete etherification of OPA with polyoxypropylene glycol occurs and as a result, part of the phosphate anions remain unreacted in the composition of the resulting aminoethers of ortho-phosphoric acid (AEPA). In this case, the hydroxyl groups of triethanolamine are completely involved in the OPA etherification reaction, but the catalytic activity of the tertiary amine weakens due to a decrease in its availability in the branched structure of AEPA. The kinetics of the etherification reaction of OPA by polyoxypropylene glycol catalyzed by TEOA and TEA were studied. It was shown that triethanolamine occupies a central position in the AEPA structure. The physico-mechanical and thermomechanical properties of polyurethane ionomer films obtained on the basis of AEPA synthesized in a wide temperature range were studied.

17.
Carbohydr Polym ; 291: 119565, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35698334

RESUMEN

This is the first time to report a facile strategy to fabricate galactoglucomannan-based latex with highly transparent, hydrophobic and flexible characteristics by combining etherification with subsequent emulsion polymerization. The allylated galactoglucomannans (A-GGM) and galactoglucomannan-based latexes (GGM-L) were prepared and their chemical structure, substitution degree, molecular weight, conversion rate, particle size and zeta potential were characterized by ATR-FTIR, 1HNMR, quantitative 13CNMR, HP-SEC, HPLC and zeta-sizer nanometer analyzer, respectively. Furthermore, the effects of substitution degree on film surface roughness and homogeneity, water vapor permeability (WVP) and thermal stability were evaluated by AFM, SEM, WVP and TGA, respectively. The optimal GGM-L film exhibited 91.3% transmittance and 0.43% haze, 117° water contact angle, 31.2% elongation at break and 30.9 MPa ultimate tensile stress. The bio-based content of the GGM-L may reach about 99 wt%, which provides a promising avenue for polyolefin-based latex replacement for paper and paperboard applications.


Asunto(s)
Látex , Mananos , Emulsiones , Látex/química , Mananos/química , Polimerizacion
18.
Chemistry ; 28(45): e202201420, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35638749

RESUMEN

Diclofenac sodium is a widely used nonsteroidal anti-inflammatory drug (NSAID) as over-the-counter (OTC) medication for the treatment of inflammatory diseases. Herein, the development of an intensified six-step continuous flow synthesis of diclofenac sodium from commercially available aniline and chloroacetic acid is described. A challenging and unprecedented etherification/Smiles rearrangement cascade of 2-chloro-N-phenylacetamide and 2,6-dichlorophenol into hydroxyacetyldiphenylamine operated with the precise control of reaction conditions in continuous flow was realized as the key step in this multistep synthetic chemistry. The undesired amide hydrolysis in Smiles rearrangement was addressed and the extra installation of N-chloroacetyl group in current industrial batch mode was avoided. Diclofenac sodium was obtained in 63 % isolated yield with an average yield of above 90 % for each step in a total residence time of 205 min.


Asunto(s)
Antiinflamatorios no Esteroideos , Diclofenaco
19.
Des Monomers Polym ; 25(1): 75-88, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35341117

RESUMEN

Due to the unique properties such as nontoxicity, biodegradability, availability from renewable resources, and cost-effectiveness, polysaccharides play a very important part in the science and technology field. The various chemically modified derivatives of these offer a wide range of high value-added in both food and non-food industries. Among the chemical modification, etherified polysaccharide is one of the most widespread derivatives by introducing an ether group which is commonly stable in both acidic and alkaline conditions. Hydroxyalkylation, alkylation, carboxymethylation, cationization, and cyanoethylation are some of the modifications commonly employed to prepare polysaccharides ethers derivatives. There also has been a growing tendency for creating new types of modification by combining the different means of chemical techniques. The correct determination of degree of substitution (DS)/molar substitution (MS) is crucially important. The objective of this article is to summarize developments in synthetic etherified polysaccharides, involving analytical methods for determination of MS/DS, measurement processes, and the associated mechanisms.

20.
Colloids Surf B Biointerfaces ; 213: 112401, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35151992

RESUMEN

The aim of the present study was to investigate the cationization of inulin with Williamson's etherification method, and compare cationic inulin with unmodified inulin coatings for stabilizing nanoliposomes (NLPs). The synthetized cationic inulin was characterized by Fourier transforms infrared (FT-IR) spectroscopy, carbon hydrogen nitrogen (CHN) elemental analysis, and energy-dispersive X-ray spectroscopy. Three concentrations of inulin and cationic inulin (1, 2, and 4 mg/mL) were used for the coating of NLPs. The concentration of 4 mg/mL was found to be optimal for inulin and cationic inulin as surface coating, on the basis of particle size, zeta potential, and microstructural morphology. The lowest values of particle size (93.41 nm), polydispersity index (0.25), and negative zeta potential (-24.41 mV) were related to the coated NLPs with cationic inulin at a concentration of 4 mg/mL. The transmission electron microscopy image of the coated NLPs with cationic inulin exhibited a spherical and core-shell structure. The coated NLPs with cationic inulin showed the highest thermal stability, physical stability, and oxidative stability. In conclusion, cationic inulin coating conferred a stronger protection than the unmodified inulin coating of NLPs. The technique developed here can be applied for surface decoration of NLPs to improve their stability.


Asunto(s)
Inulina , Liposomas , Cationes , Coloides , Inulina/química , Liposomas/química , Tamaño de la Partícula , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA