Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 658
Filtrar
1.
BMC Vet Res ; 20(1): 401, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39245728

RESUMEN

Successful identification of estrum or other stages in a cycling bitch often requires a combination of methods, including assessment of its behavior, exfoliative vaginal cytology, vaginoscopy, and hormonal assays. Vaginoscopy is a handy and inexpensive tool for the assessment of the breeding period. The present study introduces an innovative method for identifying the stages in the estrous cycle of female canines. With a dataset of 210 vaginoscopic images covering four reproductive stages, this approach extracts deep features using the inception v3 and Residual Networks (ResNet) 152 models. Binary gray wolf optimization (BGWO) is applied for feature optimization, and classification is performed with the extreme gradient boosting (XGBoost) algorithm. Both models are compared with the support vector machine (SVM) with the Gaussian and linear kernel, k-nearest neighbor (KNN), and convolutional neural network (CNN), based on performance metrics such as accuracy, specificity, F1 score, sensitivity, precision, matthew correlation coefficient (MCC), and runtime. The outcomes demonstrate the superiority of the deep model of ResNet 152 with XGBoost classifier, achieving an average model accuracy of 90.37%. The method gave a specific accuracy of 90.91%, 96.38%, 88.37%, and 88.24% in predicting the proestrus, estrus, diestrus, and anestrus stages, respectively. When performing deep feature analysis using inception v3 with the same classifiers, the model achieved an accuracy of 89.41%, which is comparable to the results obtained with the ResNet model. The proposed model offers a reliable system for identifying the optimal mating period, providing breeders and veterinarians with an efficient tool to enhance the success of their breeding programs.


Asunto(s)
Aprendizaje Profundo , Animales , Femenino , Perros , Ciclo Estral/fisiología , Vagina , Máquina de Vectores de Soporte , Estro/fisiología
2.
Steroids ; : 109513, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39305945

RESUMEN

OBJECTIVE: Neurogenesis is the process of generating new neurons from neural stem cells (NSCs) in the adult brain. Sex hormones play an essential role in the development of the brain. The aim of this study was to evaluate the neurogenic changes in the brain at different phases of the estrous cycle in adult mice. MATERIALS AND METHODS: Female NMRI mice were divided into four groups: 1- Estrous, 2- Proestrous, 3- Metestrous, and 4- Diestrous. Different stages of the estrous cycle were determined by staining of vaginal smears. The level of estrogen, progesterone, prolactin, follicle-stimulating hormone (FSH) and luteinizing hormone (LH) hormones was evaluated by the enzyme-linked immunosorbent assay (ELISA) method. The expression of brain-derived neurotrophic factor) BDNF), nerve growth factor (NGF), ciliary neurotrophic factor(CNTF)) genes in hippocampal and the expression of glial fibrillary acidic protein (GFAP) in subventricular zone (SVZ) tissue were evaluated. RESULTS: The serum estrogen and FSH increased significantly in Proestrous group (p < 0.001). Also, progesterone and prolactin hormones were significantly increased in the Diaestrus group (p < 0.001). The expression levels of BDNF, NGF, and CNTF significantly increased in the hippocampal tissue of Proestrous and Diaestrus groups (p < 0.001). The number of GFAP+ cells in SVZ of the Proestrous and Diestrous groups had a significant increase (p < 0.05, p < 0.01, p < 0.001). CONCLUSION: Our data showed that Changes in sex hormones, especially estrogen in the estrous cycle, can cause the production of new neurons and astrocytes in the hippocampus and SVZ. Therefore, the increase in neurotrophic factors in the Proestrus and Diestrus lead to neurogenesis in adult mice brains.

3.
Int J Mol Sci ; 25(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39273375

RESUMEN

Determining the estrous cycle stages in mice is essential for optimizing breeding strategies, synchronizing experimental timelines, and facilitating studies in behavior, drug testing, and genetics. It is critical for reducing the production of genetically unmodified offspring in the generation and investigation of genetically modified animal models. An accurate detection of the estrus cycle is particularly relevant in the context of the 3Rs-Replacement, Reduction, and Refinement. The estrous cycle, encompassing the reproductive phases of mice, is key to refining experimental designs and addressing ethical issues related to the use of animals in research. This study presents results from two independent laboratories on the efficacy of the Mouse Estrus Detector (MED) from ELMI Ltd. (Latvia) for the accurate determination of the estrus phase. The female mice of five strains/stocks (CD1, FVB/N, C57Bl6/J, B6D2F1, and Swiss) were used. The results showed that the MEDProTM is a low-traumatic, simple, rapid, and painless method of estrus detection that supports the principles of the 3Rs. The use of the MEDProTM for estrus detection in mice caused minimal stress, enhanced mating efficiency, facilitated an increase in the number of embryos for in vitro fertilization, and allowed the production of the desired number of foster animals.


Asunto(s)
Detección del Estro , Estro , Animales , Ratones , Femenino , Estro/fisiología , Detección del Estro/métodos , Ciclo Estral/fisiología , Masculino
4.
Front Neurosci ; 18: 1426189, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39268035

RESUMEN

The recurrent hormonal fluctuations within reproductive cycles impact sleep-wake behavior in women and in rats and mice used in preclinical models of sleep research. Strides have been made in sleep-related clinical trials to include equal numbers of women; however, the inclusion of female rodents in neuroscience and sleep research is lacking. Female animals are commonly omitted from studies over concerns of the effect of estrus cycle hormones on measured outcomes. This review highlights the estrous cycle's broad effects on sleep-wake behavior: from changes in sleep macroarchitecture to regionally specific alterations in neural oscillations. These changes are largely driven by cycle-dependent ovarian hormonal fluctuations occurring during proestrus and estrus that modulate neural circuits regulating sleep-wake behavior. Removal of estrous cycle influence by ovariectomy ablates characteristic sleep changes. Further, sex differences in sleep are present between gonadally intact females and males. Removal of reproductive hormones via gonadectomy in both sexes mitigates some, but not all sex differences. We examine the extent to which reproductive hormones and sex chromosomes contribute to sex differences in sleep-wake behavior. Finally, this review addresses the limitations in our understanding of the estrous cycle's impact on sleep-wake behavior, gaps in female sleep research that are well studied in males, and the implications that ignoring the estrous cycle has on studies of sleep-related processes.

5.
Alzheimers Res Ther ; 16(1): 183, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143583

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is the most prevalent dementia, showing higher incidence in women. Besides, lipids play an essential role in brain, and they could be dysregulated in neurodegeneration. Specifically, impaired plasma lipid levels could predict early AD diagnosis. This work aims to identify the main plasma lipids altered in early AD female mouse model and evaluate their relationship with brain lipidome. Also, the possible involvement of the estrous cycle in lipid metabolism has been evaluated. METHODS: Plasma samples of wild-type (n = 10) and APP/PS1 (n = 10) female mice of 5 months of age were collected, processed, and analysed using a lipidomic mass spectrometry-based method. A statistical analysis involving univariate and multivariate approaches was performed to identify significant lipid differences related to AD between groups. Also, cytology tests were conducted to confirm estrous cycle phases. RESULTS: Three hundred thirty lipids were detected in plasma, 18 of them showed significant differences between groups; specifically, some triacylglycerols, cholesteryl esters, lysophosphatidylcholines, phosphatidylcholines, and ether-linked phosphatidylcholines, increased in early AD; while other phosphatidylcholines, phosphatidylethanolamines, ceramides, and ether-linked phosphatidylethanolamines decreased in early AD. A multivariate approach was developed from some lipid variables, showing high diagnostic indexes (70% sensitivity, 90% specificity, 80% accuracy). From brain and plasma lipidome, some significant correlations were observed, mainly in the glycerophospholipid family. Also, some differences were found in both plasma and brain lipids, according to the estrous cycle phase. CONCLUSIONS: Therefore, lipid alterations can be identified in plasma at early AD stages in mice females, with a relationship with brain lipid metabolism for most of the lipid subfamilies, suggesting some lipids as potential AD biomarkers. In addition, the estrous cycle monitoring could be relevant in female studies.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Encéfalo , Modelos Animales de Enfermedad , Ciclo Estral , Lipidómica , Lípidos , Ratones Transgénicos , Animales , Femenino , Ciclo Estral/fisiología , Ciclo Estral/sangre , Lipidómica/métodos , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/sangre , Precursor de Proteína beta-Amiloide/genética , Lípidos/sangre , Presenilina-1/genética , Ratones , Metabolismo de los Lípidos/fisiología , Ratones Endogámicos C57BL
6.
Biol Reprod ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39105282

RESUMEN

Interactions between female metabolic status, immune response, and reproductive system functioning are complex and not fully understood. We hypothesized that chemerin, considered a hormonal link between the above-mentioned processes, influences endometrial functions, particularly cytokine secretion and signalling. Using porcine endometrial explants collected during early pregnancy and the estrous cycle, we investigated chemerin effects on the secretion of interleukins (IL-1ß, IL-6, IL-8), leukaemia inhibitory factor (LIF), tumour necrosis factor α (TNFα), transforming growth factor α (TGFα), and protein abundances of their respective receptors. Our results demonstrate chemerin modulation of cytokine secretion and receptor expression, with effects dependent on the stage of pregnancy and dose of chemerin. Furthermore, chemerin influences the phosphorylation of stress-activated protein kinase/Jun-amino-terminal kinase (SAPK/JNK) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κß) in the endometrium. Chemerin multifaceted actions, such as involvement in immune response, cell proliferation, and tissue remodelling seem to be mediated by cytokines, at least in the endometrium. These findings underscore the potential crosstalk between chemerin and hormonal signalling pathways, providing insights into the complex mechanisms underlying early pregnancy establishment and maintenance.

7.
BMC Vet Res ; 20(1): 315, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39010076

RESUMEN

BACKGROUND: While the urogenital microbiota has recently been characterized in healthy male and female dogs, the influence of sex hormones on the urogenital microbiome of bitches is still unknown. A deeper understanding of the cyclic changes in urinary and vaginal microbiota would allow us to compare the bacterial populations in healthy dogs and assess the impact of the microbiome on various urogenital diseases. Therefore, the aim of this study was to characterize and compare the urogenital microbiota during different phases of the estrous cycle in healthy female dogs. DNA extraction, 16 S rDNA library preparation, sequencing and informatic analysis were performed to determine the vaginal and urinary microbiota in 10 healthy beagle dogs at each phase of the estrous cycle. RESULTS: There were no significant differences in alpha and beta diversity of the urinary microbiota across the different cycle phases. Similarly, alpha diversity, richness and evenness of vaginal bacterial populations were not significantly different across the cycle phases. However, there were significant differences in vaginal beta diversity between the different cycle phases, except for between anestrus and diestrus. CONCLUSION: This study strongly suggests that estrogen influences the abundance of the vaginal microbiota in healthy female dogs, but does not appear to affect the urinary microbiome. Furthermore, our data facilitate a deeper understanding of the native urinary and vaginal microbiota in healthy female dogs.


Asunto(s)
Ciclo Estral , Microbiota , Vagina , Animales , Perros , Femenino , Vagina/microbiología , Ciclo Estral/fisiología , ARN Ribosómico 16S/genética , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Sistema Urinario/microbiología , Orina/microbiología , ADN Bacteriano/genética
8.
Artículo en Inglés | MEDLINE | ID: mdl-38992255

RESUMEN

RATIONALE: Preclinical studies report that drug use and social contact mutually influence the reinforcing effects of one another. Most of these studies have used same-sex dyads exclusively, and the role of factors related to biological sex and hormonal fluctuations are not well understood. OBJECTIVES: The purpose of this study was to examine the reinforcing effects of cocaine and social contact with an opposite-sex partner in male and female rats, and how these effects are modulated by ovarian hormones. METHODS: Male and female rats were trained in a nonexclusive choice procedure in which cocaine and social contact with an opposite-sex partner were simultaneously available on concurrent progressive ratio schedules of reinforcement. To examine the effects of ovarian hormones related to estrous cycling, Experiment 1 used naturally cycling, gonadally intact females, whereas Experiment 2 used ovariectomized females, and estrus was artificially induced with exogenous hormones. RESULTS: In both experiments, cocaine and social contact functioned as robust reinforcers, and there were no significant effects of biological sex or estrus status of the females. The positive reinforcing effects of both cocaine and social contact increased as a function of cocaine dose, indicating that contingent cocaine administration increases the reinforcing effects of social contact. CONCLUSIONS: These data suggest that cocaine use among opposite-sex partners may enhance factors that contribute to social bonding.

9.
Syst Biol Reprod Med ; 70(1): 204-217, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39008339

RESUMEN

In the present study, a comparative global high-throughput proteomic analysis strategy was used to identify proteomic differences between estrus and diestrus stage of estrous cycle in dairy cows. Saliva was collected from cows during estrus and diestrus, and subjected to LC-MS/MS-based proteomic analysis. A total of 2842 proteins were detected in the saliva of cows, out of which, 2437 and 1428 non-redundant proteins were identified in estrous and diestrous saliva, respectively. Further, it was found that 1414 and 405 salivary proteins were specific to estrus and diestrus, respectively while 1023 proteins were common to both groups. Among the significantly dysregulated proteins, the expression of 56 proteins was down-regulated (abundance ratio <0.5) while 40 proteins were up-regulated (abundance ratio > 2) in estrous compared to diestrous saliva. The proteins, such as HSD17B12, INHBA, HSP70, ENO1, SRD5A1, MOS, AMH, ECE2, PDGFA, OPRK1, SYN1, CCNC, PLIN5, CETN1, AKR1C4, NMNAT1, CYP2E1, and CYP19A1 were detected only in the saliva samples derived from estrous cows. Considerable number of proteins detected in the saliva of estrous cows were found to be involved in metabolic pathway, PI3K-Akt signaling pathway, toll-like receptor signaling pathway, steroid biosynthesis pathway, insulin signaling pathway, calcium signaling pathway, estrogen signaling pathway, oxytocin signaling pathway, TGF-ß signaling pathway and oocyte meiosis. On the other hand, proteins detected in saliva of diestrous cows were involved mainly in metabolic pathway. Collectively, these data provide preliminary evidence of a potential difference in salivary proteins at different stages of estrous cycle in dairy cows.


Asunto(s)
Diestro , Estro , Proteómica , Saliva , Animales , Bovinos , Femenino , Saliva/metabolismo , Saliva/química , Estro/metabolismo , Diestro/metabolismo , Proteoma/metabolismo , Proteínas y Péptidos Salivales/metabolismo , Proteínas y Péptidos Salivales/análisis
10.
Neurosci Biobehav Rev ; 164: 105789, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39002829

RESUMEN

Anxiety fluctuates across the human menstrual cycle, with symptoms worsening during phases of declining or low ovarian hormones. Similar findings have been observed across the rodent estrous cycle, however, the magnitude and robustness of these effects have not been meta-analytically quantified. We conducted a systematic review and meta-analysis of estrous cycle effects on anxiety-like behaviour (124 articles; k = 259 effect sizes). In both rats and mice, anxiety-like behaviour was higher during metestrus/diestrus (lower ovarian hormones) than proestrus (higher ovarian hormones) (g = 0.44 in rats, g = 0.43 in mice). There was large heterogeneity in the data, which was partially accounted for by strain, experimental task, and reproductive status. Nonetheless, the effect of estrous cycle on anxiety-like behaviour was highly robust, with the fail-safe N test revealing the effect would remain significant even if 21,388 additional studies yielded null results. These results suggest that estrous cycle should be accounted for in studies of anxiety in females. Doing so will facilitate knowledge about menstrual-cycle regulation of anxiety disorders in humans.


Asunto(s)
Ansiedad , Ciclo Estral , Miedo , Animales , Femenino , Ciclo Estral/fisiología , Ansiedad/fisiopatología , Ratas , Miedo/fisiología , Ratones , Conducta Animal/fisiología
11.
Artículo en Inglés | MEDLINE | ID: mdl-39069248

RESUMEN

Cytochrome P450 (CYP) 2Ds are drug metabolizing enzymes found in brain and liver which metabolize numerous centrally acting drugs. Inhibition and induction of CYP2D-mediated metabolism in rodent brain alters brain drug and metabolite concentrations and resulting drug response. In female rats, brain CYP2D metabolism varies across the estrous cycle and with exogenous estrogen, changing brain drug concentrations and response. In this study harmine-induced hypothermia was lower in humanized CYP2D6 transgenic female mice during estrus compared to diestrus. Pretreatment into the cerebral ventricles with propranolol, a selective irreversible inhibitor of human CYP2D6 in brain, increased hypothermia in estrus but not in diestrus. In vivo enzyme activity was higher in brains of transgenic mice in estrus compared to diestrus and was lower after pretreatment with inhibitor in estrus, but not in diestrus. Hepatic activity and plasma harmine concentrations were unaffected by either estrous phase or inhibition of brain CYP2D6. In wild-type female mice, harmine-induced hypothermia was unaffected by either estrous phase or inhibitor pretreatment. Male mice were used as positive controls, where pretreatment with inhibitor increased harmine-induced hypothermia in transgenic but not wild-type, mice. This study provides evidence for female hormone cycle-based regulation of drug metabolism by human CYP2D6 in brain and resulting drug response. This suggests that brain CYP2D6 metabolism may vary, for example, during the menstrual cycle, pregnancy, or menopause, or while taking oral contraceptives or hormone therapy. This variation could contribute to individual differences in response to centrally acting CYP2D6-substrate drugs by altering local brain drug and/or metabolite concentrations.


Asunto(s)
Encéfalo , Citocromo P-450 CYP2D6 , Ciclo Estral , Ratones Transgénicos , Animales , Femenino , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP2D6/genética , Humanos , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Ratones , Ciclo Estral/efectos de los fármacos , Harmina/farmacología , Propranolol/farmacología , Masculino , Hígado/metabolismo , Hígado/efectos de los fármacos , Inhibidores del Citocromo P-450 CYP2D6/farmacología , Hipotermia/inducido químicamente , Hipotermia/metabolismo
12.
J Mammary Gland Biol Neoplasia ; 29(1): 13, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916673

RESUMEN

Conflicting data exist as to how mammary epithelial cell proliferation changes during the reproductive cycle. To study the effect of endogenous hormone fluctuations on gene expression in the mouse mammary gland, we performed bulk RNAseq analyses of epithelial and stromal cell populations that were isolated either during puberty or at different stages of the adult virgin estrous cycle. Our data confirm prior findings that proliferative changes do not occur in every mouse in every cycle. We also show that during the estrous cycle the main gene expression changes occur in adipocytes and fibroblasts. Finally, we present a comprehensive overview of the Wnt gene expression landscape in different mammary gland cell types in pubertal and adult mice. This work contributes to understanding the effects of physiological hormone fluctuations and locally produced signaling molecules on gene expression changes in the mammary gland during the reproductive cycle and should be a useful resource for future studies investigating gene expression patterns in different cell types across different developmental timepoints.


Asunto(s)
Células Epiteliales , Perfilación de la Expresión Génica , Glándulas Mamarias Animales , Maduración Sexual , Células del Estroma , Transcriptoma , Animales , Femenino , Ratones , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/metabolismo , Células del Estroma/metabolismo , Células Epiteliales/metabolismo , Perfilación de la Expresión Génica/métodos , Maduración Sexual/fisiología , Proliferación Celular , Ciclo Estral/genética
13.
Addict Neurosci ; 112024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38938268

RESUMEN

Relapse is a major challenge in treating drug addiction, and drug seeking progressively increases after abstinence, a phenomenon termed "incubation of drug craving". Previous studies demonstrated both sex differences and an effect of estrous cycle in female rats in incubation of cocaine craving. In contrast, while incubation of methamphetamine craving is similar across sexes, whether estrous cycle plays a role in this incubation has yet to be fully addressed. Moreover, whether neural mechanisms underlying incubation of methamphetamine craving differ across estrous cycles is largely unknown. To address these gaps, we first compared methamphetamine self-administration, and methamphetamine seeking on both abstinence days 1 and 28 between male rats and female rats across the estrous cycle. Next, we examined neuronal activation associated with incubated methamphetamine seeking in dorsomedial striatum (DMS) and lateral portion of the anterior intralaminar nucleus of thalamus (AIT-L), two brain areas previously implicated in incubation of methamphetamine craving. We found no effect of sex or estrous cycle on methamphetamine self-administration and methamphetamine seeking on abstinence days 1 and 28. We also found no effect of sex or estrous cycle on the number of Fos-expressing cells in DMS or AIT-L following methamphetamine seeking test. Taken together, our results showed that methamphetamine self-administration and incubation of methamphetamine craving was not dependent on sex or estrous cycles under our experimental condition, and the role of DMS and AIT-L in incubation of methamphetamine craving may be similar across sexes and across estrous cycles in female rats.

14.
J Endocr Soc ; 8(7): bvae104, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38854907

RESUMEN

The obesity epidemic continues to increase, with half of US women predicted to be obese by 2030. Women with obesity are at increased risk for not only cardiovascular and liver disease, but also reproductive disorders. Although mouse models are useful in studying the effects of obesity, there is inconsistency in obesity-induction methods, diet composition, and mouse strains, and studies using female mice are limited. In this study, we sought to compare the effects of a 45% high-fat diet (HFD) versus a 60% HFD on the uterine estrous cycle of nulligravid C57BL/6J mice. For 22 weeks, we placed a total of 20 mice on either a 60% HFD, 45% HFD, or each HFD-matched control diet (CD). Both HFDs produced significant weight gain, with 60% HFD and 45% HFD gaining significant weight after 2 weeks and 15 weeks, respectively. Additionally, both HFDs led to glucose intolerance, fatty liver, and adipocyte hypertrophy. Mice fed 60% HFD displayed hyperphagia in the first 12 weeks of HFD treatment. Moreover, 60% HFD-treated mice had a longer estrous cycle length and an increased percentage of estrus stage samplings compared to CD-treated mice. Estrous cycle stage-controlled 60% HFD-treated mice displayed an increased estrogen-to-progesterone ratio and decreased ovarian corpora lutea compared to CD-treated mice, which may underlie the observed estrous cycle differences. There was no significant difference between diets regarding endometrial morphology or the percent of endometrial CD45+ immune cells. Our results indicate that consideration is needed when selecting a HFD-induced obesity mouse model for research involving female reproductive health.

15.
Horm Behav ; 164: 105593, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38909429

RESUMEN

Autism Spectrum Disorder (ASD) is characterized by differences in social communication and interaction, as well as areas of focused interests and/or repetitive behaviors. Recent studies have highlighted a higher prevalence of endocrine and reproductive disturbances among females on the autism spectrum, hinting at potential disruptions within the hypothalamus-pituitary-ovary (HPO) axis. This research aims to explore the reproductive health disparities in ASD using an animal model of autism, the C58/J inbred mouse strain, with a focus on reproductive performance and hormonal profiles compared to the C57BL/6J control strain. Our findings revealed that the estrous cycle in C58/J females is disrupted, as evidenced by a lower frequency of complete cycles and a lack of cyclical release of estradiol and progesterone compared to control mice. C58/J females also exhibited poor performance in several reproductive parameters, including reproductive lifespan and fertility index. Furthermore, estrogen receptor alpha content showed a marked decrease in the hypothalamus of C58/J mice. These alterations in the estrous cycle, hormonal imbalances, and reduced reproductive function imply dysregulation in the HPO axis. Additionally, our in-silico study identified a group of genes involved in infertility carrying single-nucleotide polymorphisms (SNPs) in the C58/J strain, which also have human orthologs associated with autism. These findings could offer valuable insights into the molecular underpinnings of neuroendocrine axis disruption and reproductive issues observed in ASD.


Asunto(s)
Modelos Animales de Enfermedad , Hipotálamo , Ratones Endogámicos C57BL , Animales , Femenino , Ratones , Hipotálamo/metabolismo , Ciclo Estral/fisiología , Salud Reproductiva , Trastorno Autístico/metabolismo , Trastorno Autístico/genética , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/genética , Reproducción/fisiología , Reproducción/genética , Progesterona/sangre , Progesterona/metabolismo , Estradiol/sangre , Estradiol/metabolismo , Masculino , Hormonas Esteroides Gonadales/metabolismo , Hormonas Esteroides Gonadales/sangre
16.
J Dairy Sci ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38788835

RESUMEN

In this study, the main objective was to assess if long luteal phases could have other causes than pregnancy losses. We enrolled Holstein dairy cows ≥50 d in milk (DIM) from a commercial herd in Brazil from October 2016 to August 2017. All cows received an estradiol-based synchronization protocol, and, on the day of insemination (d 0), were randomly assigned either an artificial insemination (AI) or a placebo insemination (PBO) in a 3:1 ratio. An ultrasound was used to assess the presence of a CL on d17, 24, and 31, which, combined to the information from patches for the detection of estrus, was used to determine the length of the luteal phase following AI or PBO. Pregnancy was assessed by ultrasound on d 31 and cows that were pregnant were excluded from the analyses. The length of the estrous cycles was categorized as short (<17 d), normal (17-23 d), long (24-30 d), and very long (≥31 d). We compared the proportion of cows in each category between the AI and PBO groups using a cumulative ordinal mixed model. We define prolonged luteal phase as estrous cycles ≥24 d and tested its association with potential risk factors (parity, season, DIM, uterine size and position score, milk production, body condition score, and the presence of a corpus luteum (CL) at enrollment to the synchronization protocol) using mixed logistic regression models. Results are presented as odds ratio (OR) and 95% credible intervals (BCI). Data from 876 inseminations (AI: n = 616, PBO: n = 260) was collected. Overall, 12% of estrous cycles were short, 31% were normal, 19% were long, and 38% were very long. There was no difference in the odds of being in longer estrous cycle categories for the AI compared with the PBO group (OR = 0.92, 95% BCI = 0.76-1.10). Season and presence of a CL at enrollment were associated with prolonged luteal phase. In the AI group, there was a possible effect of early pregnancy losses on the lifespan of the CL, but not the PBO group, which led us to conclude that long and very long estrous cycles were not all caused by the embryonic loss. In fact, the high prevalence of cows with an extended CL lifespan in the present study suggests this could be an under- or miss-reported characteristic of high-producing lactating Holstein cows. This finding may have important repercussions in the understanding of the CL function physiology of lactating Holstein cows.

17.
Anim Reprod ; 21(2): e20240010, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38756621

RESUMEN

As a positional and geometrical isomer of linoleic acid, trans 10, cis 12 conjugated linoleic acid (t10c12-CLA) reduces white fat by reducing food intake, modulating lipid metabolism, and stimulating energy expenditure. However, the t10c12-CLA products are mostly mixtures, making it difficult to obtain accurate results. Studies are needed to investigate the effects of pure t10c12-CLA on animals and humans. In this study, we used the biallelic transgenic (tg) mice, which could produce t10c12-CLA itself, to investigate the effects of pure t10c12-CLA on female reproductive ability. The results showed that the body and relative ovary weights had no significant difference between tg and wild-type (wt) littermates at ages 3 or 10 weeks. While the fecundity test found that tg mice had a significantly longer first litter time (32.0 ± 4.70 days vs. 21.3 ± 2.31 days, P<0.05), and a significantly lower number of litters (4.75 ± 2.75 vs. 6.67 ± 0.57, P<0.05) when compared with wt mice during continuous mating within seven months. Hormone profiles showed that serum estradiol levels did not change in tg mice; however, significantly (P<0.05) decreased progesterone and increased prostaglandin E2 levels were observed in tg mice compared with those of wt mice. Hematoxylin-eosin staining showed no pathological characteristics in tg ovaries, except for the increased atresia follicles (P<0.05). Moreover, the tg mice had a significantly more extended diestrus period than the wt mice (48.4 ± 6.38% vs. 39.6 ± 3.81%, P<0.05). In summary, t10c12-CLA could affect serum progesterone and prostaglandin E2 levels, lead to a disordered estrus cycle, and impact the reproductive performance of female mice. This study provided theoretical and biosafety recommendations for applying t10c12-CLA in female mammals.

18.
Sci Rep ; 14(1): 12252, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806649

RESUMEN

Sex hormones affect structural and functional plasticity in the rodent hippocampus. However, hormone levels not only differ between males and females, but also fluctuate across the female estrous cycle. While sex- and cycle-dependent differences in dendritic spine density and morphology have been found in the rodent CA1 region, but not in the CA3 or the dentate gyrus, comparable structural data on CA2, i.e. the hippocampal region involved in social recognition memory, is so far lacking. In this study, we, therefore, used wildtype male and female mice in diestrus or proestrus to analyze spines on dendritic segments from identified CA2 neurons. In basal stratum oriens, we found no differences in spine density, but a significant shift towards larger spine head areas in male mice compared to females. Conversely, in apical stratum radiatum diestrus females had a significantly higher spine density, and females in either cycle stage had a significant shift towards larger spine head areas as compared to males, with diestrus females showing the larger shift. Our results provide further evidence for the sexual dimorphism of hippocampal area CA2, and underscore the importance of considering not only the sex, but also the stage of the estrous cycle when interpreting morphological data.


Asunto(s)
Región CA2 Hipocampal , Espinas Dendríticas , Ciclo Estral , Animales , Masculino , Femenino , Espinas Dendríticas/metabolismo , Espinas Dendríticas/fisiología , Ratones , Ciclo Estral/fisiología , Región CA2 Hipocampal/fisiología , Región CA2 Hipocampal/metabolismo , Caracteres Sexuales , Neuronas/metabolismo
19.
Appetite ; 199: 107389, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38697221

RESUMEN

The complications of obesity extend beyond the periphery to the central nervous system (CNS) and include an increased risk of developing neuropsychiatric co-morbidities like depressive illness. Preclinical studies support this concept, including studies that have examined the effects of a high-fat diet (HFD) on depressive-like behaviors. Although women are approximately two-fold more likely to develop depressive illness compared to men, most preclinical studies have focused on the effects of HFD in male rodents. Accordingly, the goal of this study was to examine depressive-like behaviors in male and female rats provided access to a HFD. In agreement with prior studies, male and female rats provided a HFD segregate into an obesity phenotype (i.e., diet-induced obesity; DIO) or a diet resistant (DR) phenotype. Upon confirmation of the DR and DIO phenotypes, behavioral assays were performed in control chow, DR, and DIO rats. In the sucrose preference test, male DIO rats exhibited significant decreases in sucrose consumption (i.e., anhedonia) compared to male DR and male control rats. In the forced swim test (FST), male DIO rats exhibited increases in immobility and decreases in climbing behaviors in the pre-test sessions. Interestingly, male DR rats exhibited these same changes in both the pre-test and test sessions of the FST, suggesting that consumption of a HFD, even in the absence of the development of an obesity phenotype, has behavioral consequences. Female rats did not exhibit differences in sucrose preference, but female DIO rats exhibited increases in immobility exclusively in the test session of the FST, behavioral changes that were not affected by the stage of the estrous cycle. Collectively, these studies demonstrate that access to a HFD elicits different behavioral outcomes in male and female rats.


Asunto(s)
Conducta Animal , Depresión , Dieta Alta en Grasa , Obesidad , Animales , Femenino , Masculino , Dieta Alta en Grasa/efectos adversos , Depresión/etiología , Obesidad/psicología , Obesidad/etiología , Ratas , Ratas Sprague-Dawley , Anhedonia , Preferencias Alimentarias/psicología , Factores Sexuales
20.
Transl Anim Sci ; 8: txae074, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38800103

RESUMEN

Length of the menstrual cycle was positively associated with antral follicle number in women. If this pattern is consistent in cattle, a value-added benefit to using automated activity monitors to determine estrous status could be the ability to predict antral follicle count (AFC). We, therefore, hypothesized that as inter-estrous interval increased ultrasonographic AFC would be greater in crossbred beef heifers. Over 3 yr, crossbred beef heifers (n = 1,394) were fitted with automated activity monitors for 81 d. From days 42 to 46, heifers were submitted for ultrasonographic examination to determine AFC. From days 60 to 81, heifers were visually observed twice daily for 45 min for signs of behavioral estrus. Heifers that had a behavioral estrus that coincided with a sensor-based estrus and had a previous sensor-based estrus between 15 and 26 d earlier were used for the analysis (n = 850). A combination of regression analyses and correlation analyses were applied to understand the association between data collected by sensors and follicle number determined by ultrasonographic examination. Antral follicle count was analyzed using the GLM procedure of SAS with estrous cycle length (15 to 26 d) as a fixed effect. Estrus was more likely to initiate in the early morning hours and peak activity was greater (P < 0.0001) when estrus initiated between 0200 and 0800 hours then when estrus initiated at other times of the day. Antral follicle count did not differ due to length of the estrous cycle (P = 0.87). Thus, length of the estrous cycle obtained from three-axis accelerometers cannot be used to predict follicle number in crossbred beef heifers; however, machine learning approaches that combine multiple features could be used to integrate parameters of activity with other relevant environmental and management data to quantify AFC and improve reproductive management in beef cows.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA