Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
Ying Yong Sheng Tai Xue Bao ; 34(2): 377-386, 2023 Feb.
Artículo en Chino | MEDLINE | ID: mdl-36803715

RESUMEN

We selected a typical dolomite slope and set up three micro-plots (projection length was 2 m, width was 1.2 m) on the upper, middle, and lower slopes to analyze the variations of soil losses and the key influencing factors during two hydrological years (2020-2021). The results showed that soil losses at different slope positions on dolomite slopes followed an order of semi-alfisol in lower slopes (386 g·m-2·a-1) > inceptisol in middle slopes (77 g·m-2·a-1) > entisol in upper slopes (48 g·m-2·a-1). Downward along the slope, the positive correlation gradually increased between soil losses and surface soil water content, as well as rainfall, while it gradually decreased with the maximum 30 min rainfall intensity. The meteorological factors affecting soil erosion on the upper, middle and lower slopes were the maximum 30 min rainfall intensity, precipitation, average rainfall intensity and surface soil water content, respectively. Soil erosion processes on upper slopes were mainly driven by raindrop splash erosion and infiltration-excess runoff, while that on lower slopes were mainly driven by saturation-excess runoff. The volume ratio of fine soil in the soil profile was the key factor of soil losses on dolomite slopes, with an explanation rate of 93.7%. The lower slope was the key site of soil erosion in the dolomite slopes. Subsequent rock desertification management should be based on the erosion mechanism of different slope positions, while control measures should be arranged according to local conditions.


Asunto(s)
Sedimentos Geológicos , Suelo , Lluvia , Movimientos del Agua , Agua , China
2.
Sci Total Environ ; 860: 160452, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36436635

RESUMEN

Suspended fine sediment has a significant impact on freshwater quality variables such as visual clarity (VC). However, freshwater quality is related to the attributes of the catchment sources contributing fine sediment to the stream network. Here, the extent to which an array of sources defined spatially according to erosion process and geological parent material may be discriminated and classified based on sediment-related water quality (SRWQ) attributes that potentially affect VC was examined. Erosion sources were sampled across two New Zealand catchments representing six types of erosion and eight parent materials. Erosion source measurements focused on particle size, organic matter content, and light beam attenuation (which is convertible to VC). The source data were analysed to: 1) evaluate source variability using a combination of Kruskal-Wallis and principal component analysis; 2) reclassify sources using a Random Forest model; and 3) demonstrate how erosion source affects VC for a range of theoretical sediment concentrations (SC) using a simple empirical model. The results indicate that SRWQ attributes show significant variation across erosion sources. The extent to which attributes differed between sources often related to whether there was a strong association between a specific erosion process and parent material. The 19 a priori source classifications were reduced to 5 distinct sources that combined erosion process and parent material (i.e., bank erosion-alluvium; mass movement-ancient volcanics; mass movement-sedimentary; surficial erosion; gully-unconsolidated sandstone). At low SC, the impact of erosion source on VC became most evident ranging from 2.6 to 5.6 m at SC of 5 g m-3. These findings show how catchment sources of sediment, in addition to sediment concentration, influence VC, and highlight the need to consider quality as well as quantity of material supplied to stream networks when planning erosion control.


Asunto(s)
Sedimentos Geológicos , Calidad del Agua , Sedimentos Geológicos/análisis , Ríos , Agua Dulce , Nueva Zelanda
3.
Sci Total Environ ; 831: 154832, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35346710

RESUMEN

Sediment fingerprinting estimates the proportional contribution of fine sediment from distinct catchment sources delivered to downstream receiving environments. Increased attention has focused on assessing the accuracy of source contribution estimates, particularly in relation to tracer selection and statistical un-mixing procedures. However, no studies have systematically tested the impact of source combination or dominance on the accuracy of source estimates. Here, we assess sensitivity to tracer type, selection, and number of sources, and examine how variations in the dominant sediment source affect the accuracy of source apportionments using numerical mixtures. Sources were sampled according to erosion process and land cover from a New Zealand catchment. Topsoil and subsoil (landslide) samples were collected from pasture, harvested pine, kanuka scrub, and native forest, while banks were sampled along the main channel. Samples were analysed for bulk geochemistry, fallout radionuclides, and compound specific stable isotopes (CSSIs). Source apportionment accuracy tended to decrease as source number increased, which reflected decreasing source discrimination. Tracer selection showed variations in accuracy but exhibited no clear pattern overall. Source combination and particularly the dominant source had the largest impact on accuracy, reflecting the level of discrimination for each source. Notably, channel bank was frequently identified as the dominant source when using CSSI tracers. While this partly reflected lower levels of discrimination, the CSSI apportionment was particularly sensitive to the use of post-unmixing corrections routinely applied to derive soil proportional contributions from isotopic proportions. This sensitivity likely related to the low organic carbon content in bank material and the assumption that source apportionments based on isotopic proportions can be corrected using a linear relationship with organic carbon content. These results indicate that the use of CSSI tracers in catchments where erosion sources exhibit large differences in soil organic carbon content may introduce significant unquantified error in source apportionments.


Asunto(s)
Sedimentos Geológicos , Suelo , Carbono/análisis , Bosques , Sedimentos Geológicos/química , Radioisótopos/análisis , Suelo/química
4.
Ying Yong Sheng Tai Xue Bao ; 32(8): 2886-2894, 2021 Aug.
Artículo en Chino | MEDLINE | ID: mdl-34664462

RESUMEN

Rainfall intensity, slope length, and slope gradient are the important factors affecting runoff and sediment yield. In order to quantitatively analyze the effects of rainfall intensity, slope length, and slope gradient on the erosion process of Ansai loess slope in loess hilly and gully region, we analyzed the variation of runoff and sediment yield on Ansai loess with two slope lengths (5, 10 m), three slopes (5°, 10°, 15°) and two rainfall intensities (60, 90 mm·h-1) in an indoor simulated rainfall experiment. The results showed that the initial runoff generation time decreased with the increases of slope length, though the overall change was not significant. The initial runoff generation time decreased with the increases of rainfall intensity. Compared with the intensity of 60 mm·h-1, the initial runoff generation time decreased by 5.7-18 min under the intensity of 90 mm·h-1. Among them, the runoff initiation time on the slope of 10° was the fastest. With the duration of rainfall, runoff yield rate increased rapidly at first, and then gradually fluctuated around a certain value. The sediment yield rate increased rapidly in a short period of time at the initial stage of runoff generation, and then decreased after reaching the maximum, and being gradua-lly stable. The rates of runoff and sediment yield increased with the increases of slope length and rainfall intensity, but the law of change with slope was not obvious. With the increases of rainfall intensity, slope length and gradient, the total sediment yield increased accordingly. Under the rainfall intensity of 90 mm·h-1, the slope surface with the length of 10 m and slope of 15° generated rill, leading to the highest total erosion amount (11885.66 g). Under the rainfall intensity of 60 mm·h-1, the erosion amount per unit area decreased with the increases of slope length, and there was a critical erosion slope length in 5-10 m slope section. Slope length, slope and rainfall intensity all played a promoting role in runoff process. Rainfall intensity, slope length, and their interaction contributed more to runoff yield rate and total erosion amount. Rainfall intensity contributed the most to runoff yield rate, with a contribution rate of 49.8%. The contribution rate of slope length to the total erosion was the largest, which reached 37.8%.


Asunto(s)
Lluvia , Movimientos del Agua , China , Sedimentos Geológicos , Suelo
5.
J Environ Manage ; 289: 112479, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33838465

RESUMEN

Gypsum amendment is widely used to resolve alkalinity issues and implement sustainable management for bauxite residue disposal areas (BRDAs). Amended BRDAs under natural conditions suffer from long-term erosion processes. Nevertheless, the effect of erosion on amendment efficacy is rarely assessed. In this study, by integrating the geochemical modelling of PHREEQC and column leaching experiments, the dissolution of alkaline solids in bauxite residue (BR) and gypsum amendment, as well as their environmental behaviors, were determined through a 1-year simulated rainfall leaching experiment. The PHREEQC simulation results demonstrated that Na+ ion strength, CO2 partial pressure and rainfall, all affected the saturation index (SI) of calcite significantly and accelerated its corrosion, leading to the dissolution of gypsum and calcite in a relatively stable state. However, Na+ ion strength and rainfall significantly acted on the SI of gypsum, which lead to loss of Ca2+ and reduction of alkaline stability. In addition to the effects of Na+ and Ca2+ on the saturation concentration of gypsum and calcite solution, Na+ and Ca2+ also exhibited significant effects on the equilibrium of chemical species reactions. The column results confirmed that stability of gypsum and calcite was consistent with the simulation results of PHREEQC in the BRDAs environment. Furthermore, multiple linear regressions revealed differences in combined contributions of rainwater and atmospheric CO2 on the stability of calcite and gypsum. The PHREEQC simulation provides a new approach to predict long-term alkaline stability of BR as well as to establish sustainable remediation on BRDAs during erosion process.


Asunto(s)
Óxido de Aluminio , Sulfato de Calcio , Suelo
6.
Ying Yong Sheng Tai Xue Bao ; 31(9): 3141-3153, 2020 Sep 15.
Artículo en Chino | MEDLINE | ID: mdl-33345516

RESUMEN

The engineering deposits produced by the increasing frequency of production and construction activities are the main source of man-made soil erosion. In this study, we examined the change of runoff-sediment relationship and erosion hydrodynamic characteristics with the engineering deposits of aeolian sandy soil and red soil, based on simulated rainfall experiments with different gravel contents (0, 10%, 20%, 30%) and rainfall intensities (1.0, 1.5, 2.0, 2.5 mm·min-1). The results showed that the sediment yield rate of the aeolian sandy soil deposits gradually increased with the duration of rainfall. The sediment yield rate of red soil deposits under 1.0 mm·min-1 rainfall intensity increased first and then gradually stabilized. Under other rainfall densities, there was a trend of fluctuation after rapid decline, the greater the rainfall intensity and the smaller the gravel content, the more intense the fluctuation. When the gravel content was 0 and 10%, there were rills erosion on the slope surface of aeolian sandy soil accumulation, and the sediment yield rate of rill development stage was 6.74-57.40 times of that of the sheet erosion stage. The erosion process of red soil deposits could be divided into two stages: the loose particle erosion and the soil-rock erosion stage. The sediment yield rate of the loose particle erosion stage was 1.05-3.49 times that of the soil-rock erosion stage. In general, the sediment yield rate of two soil deposits increased with increasing rainfall intensity. The sediment yield rate fluctuated with the increases of gravel content at 1.0 and 1.5 mm·min-1, with a decreasing trend under >1.5 mm·min-1. The sediment yield rate of aeolian sandy soil deposits was 1.45-4.14 times of that of red soil deposits under the same rainfall and gravel content conditions. During the erosion process of aeolian sandy soil deposits, the runoff-sediment relationship changed from low sediment concentration to high sediment concentration, while there was a reverse relationship for red soil deposits. During the high sediment concentration period, the increasing rate of the sediment yield rate of aeolian sandy soil deposits was 1.94-37.60 times of that of red soil deposits. For low sediment concentration period, the decreasing rate of the sediment yield rate of red soil deposits was 1.40-21.30 times of that of aeolian sandy soil deposits. In general, the runoff power was better than the runoff shear force in describing the erosion dyna-mics of these two types of deposits. The critical runoff power increased with increasing gravel content. The critical runoff power of aeolian sandy soil deposits during the rill erosion stage (0.02-0.04 W·m-2) was two times of that of the sheet erosion stage, while the critical stream power was lower than that of the red soil deposits. These results provide a scientific reference for modelling soil erosion processes for engineering deposits.


Asunto(s)
Lluvia , Movimientos del Agua , Sedimentos Geológicos , Humanos , Suelo , Erosión del Suelo
7.
Ciênc. rural ; 38(9): 2485-2492, dez. 2008. graf, tab
Artículo en Portugués | LILACS | ID: lil-498400

RESUMEN

O objetivo deste trabalho foi estudar a influência das superfícies geomórficas na variação espacial da perda de solo por erosão na região de Pereira Barreto, São Paulo (SP). Os solos foram amostrados nos pontos de cruzamento de uma malha, georreferenciados, com intervalos de 350m, na profundidade de 0,0-0,2m, totalizando 67 pontos. Foram feitas determinações da composição granulométrica e do conteúdo de matéria orgânica. Foram avaliados os fatores de erosão locais, tais como erosividade (R), erodibilidade (K), fator topográfico (LS), uso e manejo (C), práticas conservacionistas (P), potencial natural de erosão (PNE), perda de solo com e sem práticas conservacionistas (A e *A), tolerância de perda de solo (T) e risco de erosão (RE). As variáveis A, PNE e RE apresentaram forte correlação espacial com o fator topográfico (LS), indicando a forte relação do relevo sobre os fatores de erosão. As perdas de solo (A e *A) apresentaram comportamento coerente com a conceituação de superfícies geomórficas, evidenciando as relações de dependência do processo erosivo do solo aos ambientes geomórficos.


The objective of this research was to study the influence of the geomorphic surfaces in the spatial variations of the soil loss by erosion in the Pereira Barreto region, São Paulo State, Brazil. Soil samples were collected in 67 points, in a depth of 0.0-0.2m, located in a 350m regular grid to measure the particle size distribution and organic matter content. The local erosion factors were determined: erosivity (R), erodibility (K), topographical factor (LS), use and tillage (C), and conservation tillage (P), natural potential of erosion (PNE), soil loss with and without conservation tillage (A), soil loss tolerance (T) and erosion risk (RE). The variables A, PNE and RE presented great spatial correlation with the topographical factor (LS), indicating the influence of the relief on the erosion factors. The soil losses (A and A *) presented coherent behavior with the concept of geomorphic surfaces, evidencing the dependence relationships of the soil erosion process to the geomorphic environmental.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA