Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanotechnology ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39284312

RESUMEN

Reliable and cost-effective glucose sensors are in rising demand among diabetes patients. The combination of metals and conducting polymers creates a robust electrocatalyst for glucose oxidation, offering enzyme-free, high stability, and sensitivity with outstanding electrochemical results. Herein, graphene is grown on nickel foam by chemical vapor deposition to make a graphene@nickel foam scaffold (G@NF), on which silver nanoplates-polyaniline (Ag-PANI) 3D architecture is developed by sonication-assisted co-electrodeposition. The resulting binder-free 3D Ag-PANI/G@NF electrode was highly porous, as characterized by XPS, FESEM, XRD, FTIR, and Raman spectroscopy. The binder-free 3D Ag-PANI/G@NF electrode exhibits remarkable electrochemical efficiency with a superior electrochemical active surface area. The amperometric analysis provides excellent anti-interference performance, a low limit of deduction (0.1 nM), robust sensitivity (1.7 x 1013 µA mM-1cm-2), and a good response time. Moreover, the Ag-PANI/G@NF enzyme-free sensor is utilized to observe glucose levels in human blood serums and exhibits excellent potential to become a reliable clinical glucose sensor.

2.
Colloids Surf B Biointerfaces ; 239: 113934, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38729020

RESUMEN

Today, diabetes mellitus is one of the most common diseases that affects the population on a worldwide scale. Patients suffering from this disease are required to control their blood-glucose levels several times a day through invasive methods such as piercing their fingers. Our NaGdF4: 5% Er3+, 3% Nd3+ nanoparticles demonstrate a remarkable ability to detect D-glucose levels by analysing alterations in their red-to-green ratio, since this sensitivity arises from the interaction between the nanoparticles and the OH groups present in the D-glucose molecules, resulting in discernible changes in the emission of the green and red bands. These luminescent sensors were implemented and tested on paper substrates, offering a portable, low-cost and enzyme-free solution for D-glucose detection in aqueous solutions with a limit of detection of 22 mg/dL. With this, our study contributes to the development of non-invasive D-glucose sensors, holding promising implications for managing diabetes and improving overall patient well-being with possible future applications in D-glucose sensing through tear fluid.


Asunto(s)
Glucosa , Metales de Tierras Raras , Nanopartículas , Papel , Metales de Tierras Raras/química , Glucosa/análisis , Glucosa/química , Nanopartículas/química , Técnicas Biosensibles/métodos , Humanos , Glucemia/análisis , Límite de Detección
3.
Biochem Biophys Res Commun ; 675: 99-105, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37463525

RESUMEN

In this study, we have fabricated a novel platform for sensing of urea using gelatin/carbon dots nanocomposite system. The sensor electrode was created by depositing the nanocomposite gel onto thin glass plates coated with indium tin oxide (ITO) using the drop casting technique. The behavior of these electrodes was investigated against a number of bioanalytes in the concentration range of 2-20 mM by cyclic voltammetry. The system was observed to be highly selective for urea with a sensitivity of 1.65 µA/mM/cm in the experimental linear range of 2-20 mM. Furthermore, the gelatin/CD-ITO electrode were also subjected to 50 KeV N2+ ion beam irradiation with varying fluence in the range of 1012 to 1016 ions/cm2. Sensing profile of the irradiated samples for urea suggested enhancement in sensitivity to 2 µA/mM cm2, when the ion fluence was 5 × 1015 ions/cm2. This enhancement after irradiation suggests a clear dependence of detection on the fluence of the ion beam. The observed excellent sensitivity of radiation processed nanocomposite material can be used as an enzyme-free platform for urea detection. Additionally, the CDs showed fluorescence quenching on treatment with mere 50 µM urea suggesting the high sensitivity of the platform.


Asunto(s)
Carbono , Nanocompuestos , Urea , Gelatina , Electrodos , Iones , Técnicas Electroquímicas
4.
Biochem Biophys Res Commun ; 655: 97-103, 2023 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-36934590

RESUMEN

Serum cholesterol dysregulation is associated with prognosis and diagnosis of many diseases and effective biosensor will improvise their management. A novel electrochemical biosensor was fabricated based on gelatin-Au@CD nanoconjugate films for cholesterol detection. Initially, the surface of indium titanium oxide (ITO) coated glass was modified by drop casting of gelatin-Au@CD nanoconjugates to prepare the electrodes. Electrochemical studies for detection of bioanalytes(such as urea (U), ascorbic acid (AA), oxalic acid (OA), gallic acid (GA), cholesterol (Chox), dextrose (D), l-cysteine (Cys) and citric acid (CA)) were performed using cyclic voltammetry. The presence of nanoconjugates provided an appropriate environment for enhanced electrochemical response for cholesterol. These electrodes exhibited a linear response towards the presence of cholesterol in the linear concentration range of 2-20 mM with a correlation coefficient of 0.95, and the superior sensitivity of 1.36 µA/mM/cm2. Additionally, enhanced sensitivity (2.99 µA/mM/cm2) of nitrogen ion irradiated films up to a fluence of 1016 ions/cm2 was noticed because of morphological changes in the electrode surface brought about by irradiation. Approximately 54% enhancement was found when the ion fluence was 1016 ions/cm2. The designed nanoconjugate electrode showed excellent response towards cholesterol sensing and eliminates the requirement of any enzymes making the overall process simpler, cost-effective and allows for room temperature storage.


Asunto(s)
Técnicas Biosensibles , Carbono , Nanoconjugados , Gelatina , Oro , Colesterol , Electrodos , Técnicas Electroquímicas
5.
Colloids Surf B Biointerfaces ; 222: 113033, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36455362

RESUMEN

The current study reports the design and construction of enzyme-free sensor using N-doped graphene quantum dots (N-GQDs)-decorated tin sulfide nanosheets (SnS2) for in situ monitoring of H2O2 secreted by human breast cancer cells. N-GQDs nanoparticles having a size of less than 1 nm were incorporated into SnS2 nanosheets to form an N-GQDs@SnS2 nanocomposite using a simple hydrothermal approach. The resulting hybrid material was an excellent electrocatalyst for the reduction of H2O2, owing to the combined properties of highly conductive N-GQDs and SnS2 nanosheets. The N-GQDs@SnS2-based sensing platform demonstrated substantial sensing ability, with a detection range of 0.0125-1128 µM and a limit of detection of 0.009 µM (S/N = 3). The sensing performance of N-GQDs@SnS2 was highly stable, selective, and reproducible. The practical application of the N-GQDs@SnS2 sensor was successfully demonstrated by quantifying H2O2 in lens cleaner, human urine, and saliva samples. Finally, the N-GQDs@SnS2 electrode was successfully applied for the real-time monitoring of H2O2 released from breast cancer cells and mouse fibroblasts. This study paves the way to designing efficient non-enzymatic electrochemical sensors for various biomolecule detection using a simple method.


Asunto(s)
Neoplasias de la Mama , Grafito , Puntos Cuánticos , Animales , Ratones , Humanos , Femenino , Grafito/química , Puntos Cuánticos/química , Peróxido de Hidrógeno , Electrodos
6.
Biosensors (Basel) ; 10(2)2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32024126

RESUMEN

Recent progress in the field of electroanalysis with metal nanoparticle (NP)-based screen-printed electrodes (SPEs) is discussed, focusing on the methods employed to perform the electrode surface functionalization, and the final application achieved with different types of metallic NPs. The ink mixing approach, electrochemical deposition, and drop casting are the usual methodologies used for SPEs' modification purposes to obtain nanoparticulated sensing phases with suitable tailor-made functionalities. Among these, applications on inorganic and organic molecule sensing with several NPs of transition metals, bimetallic alloys, and metal oxides should be highlighted.


Asunto(s)
Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Electrodos/normas , Nanopartículas del Metal/química
7.
Anal Bioanal Chem ; 410(30): 7921-7929, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30353217

RESUMEN

High electrical conductivity and more active sites exposure are crucial for improving the performance of electrocatalyst. Binary metal oxide nanoarray grown on conductive substrate offers a 3D self-supported electrode with a great promise in boosting its performance in enzyme-free glucose sensing. Here, NiMoO4 nanosheet arrays anchored on carbon cloth (NiMoO4 NSA/CC) was prepared via a simple hydrothermal synthesis and used as 3D self-supported electrode for enzyme-free glucose sensing. The morphology and composition of NiMoO4 nanosheet have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The electrochemical results show that NiMoO4 NSA/CC exhibits remarkable high catalytic activity towards glucose oxidation, with a wide linear response ranging from 1 µM to 0.9 mM, a high sensitivity of 4.13 mA/mM·cm2, and a low detection limit of 1 µM (S/N = 3). The enhanced performance might be attributed to the merits of nanosheet arrays with large surface area, self-supported electrode with 3D open network, as well as bimetallic component with high conductivity. Furthermore, NiMoO4 NSA/CC also shows good selectivity and reliability for glucose detection in human serum. This work offers a new pathway for the construction of enzyme-free glucose sensor with high performance. Graphical abstract ᅟ.


Asunto(s)
Técnicas Biosensibles , Glucosa/química , Molibdeno/química , Níquel/química , Óxidos/química , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Técnicas Biosensibles/tendencias , Técnicas Electroquímicas/métodos , Electrodos , Límite de Detección , Nanotecnología , Reproducibilidad de los Resultados
8.
Food Chem ; 194: 61-7, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26471527

RESUMEN

An enzyme free glucose sensor was prepared by a molecular imprinting method (MIP). The procedure was developed by in situ preparation of a new polyvinyl acetate (PVA) electrode reinforced by MnO2/CuO loaded on graphene oxide (GO) nanoparticles (PVA/MnO2@GO/CuO). The nanocomposite was modified in the presence of glucose and then imprinted. A carbone paste method with voltammetry was used in the fabrication of the sensor from prepared MIP nanocomposite. PVA/MnO2@GO/CuO electrode was characterized by X-ray diffraction, FT-IR spectroscopy and scanning electron microscopy. Electrocatalytic activity of the electrode toward glucose oxidation was then investigated by cyclic voltammetry in alkaline medium. The results show that the response of PVA/MnO2@GO/CuO MIP is much higher than PVA/MnO2@GO/CuO non-imprinted electrode toward glucose oxidation. The detection limit was 53µM, and the sensor responses are linear for concentrations from 0.5 to 4.4mM. Relative standard deviations for intra- and inter-day determination were less than 6.0%. The relative recoveries for different samples were 96%.


Asunto(s)
Cobre/química , Glucosa/química , Compuestos de Manganeso/química , Impresión Molecular/métodos , Nanopartículas/química , Óxidos/química , Electrodos , Grafito/química , Oxidación-Reducción , Polivinilos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA