RESUMEN
In this study, horseradish peroxidase was extracted, purified, and immobilized on a calcium alginate-starch hybrid support by covalent bonding and entrapment. The immobilized HRP was used for the biodegradation of phenol red dye. A 3.74-fold purification was observed after precipitation with ammonium sulfate and dialysis. An immobilization yield of 88.33%, efficiency of 56.89%, and activity recovery of 50.26% were found. The optimum pH and temperature values for immobilized and free HRP were 5.0 and 50 °C and 6.5 and 60 °C, respectively. The immobilized HRP showed better thermal stability than its free form, resulting in a considerable increase in half-life time (t1/2) and deactivation energy (Ed). The immobilized HRP maintained 93.71% of its initial activity after 45 days of storage at 4 °C. Regarding the biodegradation of phenol red, immobilized HRP resulted in 63.57% degradation after 90 min. After 10 cycles of reuse, the immobilized HRP was able to maintain 43.06% of its initial biodegradative capacity and 42.36% of its enzymatic activity. At the end of 15 application cycles, a biodegradation rate of 8.34% was observed. In conclusion, the results demonstrate that the immobilized HRP is a promising option for use as an industrial biocatalyst in various biotechnological applications.
RESUMEN
The sarcoendoplasmic reticulum Ca2+-ATPase (SERCA) is a membrane protein that is destabilized during purification in the absence of calcium ions. The disaccharide trehalose is a protein stabilizer that accumulates in the yeast cytoplasm when under stress. In the present work, SERCA was purified by including trehalose in the purification protocol. The purified SERCA showed high protein purity (~95%) and ATPase activity. ATP hydrolysis was dependent on the presence of Ca2+ and the enzyme kinetics showed a hyperbolic dependence on ATP (Km = 12.16 ± 2.25 µM ATP). FITC labeling showed the integrity of the ATP-binding site and the identity of the isolated enzyme as a P-type ATPase. Circular dichroism (CD) spectral changes at a wavelength of 225 nm were observed upon titration with ATP, indicating α-helical rearrangements in the nucleotide-binding domain (N-domain), which correlated with ATP affinity (Km). The presence of Ca2+ did not affect FITC labeling or the ATP-mediated structural changes at the N-domain. The use of trehalose in the SERCA purification protocol stabilized the enzyme. The isolated SERCA appears to be suitable for structural and ligand binding studies, e.g., for testing newly designed or natural inhibitors. The use of trehalose is recommended for the isolation of unstable enzymes.
RESUMEN
L-asparaginase (ASNase) is an efficient inhibitor of tumor development, used in chemotherapy sessions against acute lymphoblastic leukemia (ALL) tumor cells; its use results in 80% complete remission of the disease in treated patients. Saccharomyces cerevisiae's L-asparaginase II (ScASNaseII) has a high potential to substitute bacteria ASNase in patients that developed hypersensitivity, but the endogenous production of it results in hypermannosylated immunogenic enzyme. Here we describe the genetic process to acquire the ScASNaseII expressed in the extracellular medium. Our strategy involved a fusion of mature sequence of protein codified by ASP3 (amino acids 26-362) with the secretion signal sequence of Pichia pastoris acid phosphatase enzyme; in addition, this DNA construction was integrated in P. pastoris Glycoswitch® strain genome, which has the cellular machinery to express and secrete high quantity of enzymes with humanized glycosylation. Our data show that the DNA construction and strain employed can express extracellular asparaginase with specific activity of 218.2 IU mg-1. The resultant enzyme is 40% more stable than commercially available Escherichia coli's ASNase (EcASNaseII) when incubated with human serum. In addition, ScASNaseII presents 50% lower cross-reaction with anti-ASNase antibody produced against EcASNaseII when compared with ASNase from Dickeya chrysanthemi.
Asunto(s)
Antineoplásicos , Leucemia-Linfoma Linfoblástico de Células Precursoras , Saccharomyces , Humanos , Asparaginasa/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Antineoplásicos/farmacologíaRESUMEN
Eukarya pyruvate kinases possess glutamate at position 117 (numbering of rabbit muscle enzyme), whereas bacteria have either glutamate or lysine. Those with E117 are K+-dependent, whereas those with K117 are K+-independent. In a phylogenetic tree, 80% of the sequences with E117 are occupied by T113/K114/T120 and 77% of those with K117 possess L113/Q114/(L,I,V)120. This work aims to understand these residues' contribution to the K+-independent pyruvate kinases using the K+-dependent rabbit muscle enzyme. Residues 117 and 120 are crucial in the differences between the K+-dependent and -independent mutants. K+-independent activity increased with L113 and Q114 to K117, but L120 induced structural differences that inactivated the enzyme. T120 appears to be key in folding the protein and closure of the lid of the active site to acquire its active conformation in the K+-dependent enzymes. E117K mutant was K+-independent and the enzyme acquired the active conformation by a different mechanism. In the K+-independent apoenzyme of Mycobacterium tuberculosis, K72 (K117) flips out of the active site; in the holoenzyme, K72 faces toward the active site bridging the substrates through water molecules. The results provide evidence that two different mechanisms have evolved for the catalysis of this reaction.
Asunto(s)
Piruvato Quinasa/genética , Piruvato Quinasa/metabolismo , Piruvato Quinasa/ultraestructura , Secuencia de Aminoácidos/genética , Animales , Apoenzimas/metabolismo , Sitios de Unión , Catálisis , Dominio Catalítico , Ácido Glutámico/metabolismo , Lisina/metabolismo , Modelos Moleculares , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/genética , Filogenia , Potasio/metabolismo , Conformación Proteica , ConejosRESUMEN
Leishmaniasis is one of the most significant of the neglected tropical diseases, with 350 million people in 98 countries worldwide living at risk of developing one of the many forms of the disease. During the transmission of the parasite from its vector to the vertebrate host, neutrophils are rapidly recruited to the site of the sandfly bite. Using different strategies, neutrophils can often kill a large number of parasites. However, some parasites can resist neutrophil-killing mechanisms and survive until macrophage arrival at the infection site. One of the strategies for neutrophil-mediated killing is the production of neutrophil extracellular traps (NETs). Because of its ecto-localized nuclease activity, the enzyme 3'-nucleotidase/nuclease (3'NT/NU), present in different Leishmania species, was recently identified as part of a possible parasite escape mechanism from NET-mediated death. Previous studies showed that 3'NT/NU also plays an important role in the establishment of Leishmania infection by generating extracellular adenosine that favors the parasite and macrophage interaction. This study aims to deepen the knowledge about 3'NT/NU, mainly with respect to its nuclease activity that is little studied in the current literature. For this, we cloned, expressed and purified the recombinant La3'NT/NU and have confirmed its contribution to the parasite escape from NET-mediated killing.
Asunto(s)
Desoxirribonucleasas/inmunología , Trampas Extracelulares/inmunología , Leishmania/enzimología , Leishmaniasis/inmunología , Neutrófilos/inmunología , Nucleotidasas/inmunología , Proteínas Protozoarias/inmunología , Clonación Molecular , Desoxirribonucleasas/genética , Trampas Extracelulares/parasitología , Humanos , Leishmania/genética , Leishmania/inmunología , Leishmaniasis/parasitología , Nucleotidasas/genética , Proteínas Protozoarias/genéticaRESUMEN
L-asparaginase é um inibidor eficiente do crescimento tumoral, usado em sessões de quimioterapia contra a Leucemia Linfoblástica Aguda (LLA), resultando na remissão completa da doença em 90% dos pacientes tratados. A L-asparaginase II de Saccharomyces cerevisiae (ScASNaseII) tem alto potencial de superar os efeitos adversos da L-asparaginase de bactéria, porém sua produção endógena resulta em uma proteína hipermanosilada e, consequentemente, imunogênica. A cepa de Pichia pastoris Glycoswitch tem a maquinaria para expressar e secretar altas quantidades de enzima com glicosilação humanizada. Nesse trabalho, descrevemos o processo genético para expressar a ScASNaseII no meio extracelular pela P. pastoris Glycoswitch, e também os parâmetros bioquímicos, perfil cinético, citotoxicidade contra células leucêmicas e a interferência da glicosilação na atividade da enzima obtida. Nossos dados mostram que a cepa aplicada foi capaz de expressar ScASNaseII no meio extracelular passível de purificação de proteínas contaminantes com apenas um passo cromatográfico. A atividade específica para asparagina foi 218,2 UI/mg e a atividade glutaminásica representou 3,1% da atividade asparaginásica. Os parâmetros cinéticos foram KM = 120,5 µM e a eficiência catalítica de 3,8 x 105 M-1s-1. Análises por meio de gel nativo sugerem uma conformação tetramérica de aproximadamente 150 kDa. Essa é uma nova estratégia de produzir essa enzima de forma extracelular, com mais facilidade de purificação e com melhores propriedades biotecnológicas
L-asparaginase is an efficient inhibitor of tumor development, used in chemotherapy sessions against acute lymphoblastic leukemia (ALL) tumor cell; its use results in 90% complete remission of the disease in treated patients. Saccharomyces cerevisiae's L-asparaginase II (ScASNaseII) has a high potential to overcome the side effects of bacteria L-asparaginase, but the endogenous production of it results in hypermannosylated immunogenic enzyme. However, Pichia pastoris Glycoswitch strain has the machinery to express and secrete high quantity of the enzyme and with humanized glycosylation. Here we describe the genetic process to acquire the ScASNaseII in the extracellular medium expressed by P. pastoris Glycoswitch, and the biochemical properties of the resultant enzyme, kinetic profile, cytotoxicity against ALL cell line and the interference of glycosylation in its activity. Our data show that the strain employed is able to express extracellular asparaginase active and possible to be purified of contaminant proteins using a single chromatographic step. The specific activity using asparagine was 218.2 IU.mg-1 and the glutaminase activity represents 3.1% of its asparaginase activity. The kinetics parameters were KM=120.5 µM and a catalytic efficiency of 3.8x105 M-1s-1. The Native-PAGE suggested a tetrameric protein conformation, with approximately 150 kDa. This is a novel strategy to produce this enzyme extracellularly, easier to purify and with better biotechnological properties
Asunto(s)
Pichia/aislamiento & purificación , Asparaginasa/análisis , Saccharomyces cerevisiae/aislamiento & purificación , Glicosilación , Proteínas Recombinantes , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnósticoRESUMEN
Background: Biodegradation is a reliable approach for efficiently eliminating persistent pollutants such as chlorpyrifos. Despite many bacteria or fungi isolated from contaminated environment and capable of degrading chlorpyrifos, limited enzymes responsible for its degradation have been identified, let alone the catalytic mechanism of the enzymes. Results: In present study, the gene cpd encoding a chlorpyrifos hydrolase was cloned by analysis of genomic sequence of Paracoccus sp. TRP. Phylogenetic analysis and BLAST indicated that CPD was a novel member of organophosphate hydrolases. The purified CPD enzyme, with conserved catalytic triad (Ser155-Asp251-His281) and motif Gly-Asp-Ser-Ala-Gly, was significantly inhibited by PMSF, a serine modifier. Molecular docking between CPD and chlorpyrifos showed that Ser155 was adjacent to chlorpyrifos, which indicated that Ser155 may be the active amino acid involved in chlorpyrifos degradation. This speculation was confirmed by site-directed mutagenesis of Ser155Ala accounting for the decreased activity of CPD towards chlorpyrifos. According to the key role of Ser155 in chlorpyrifos degradation and molecular docking conformation, the nucleophilic catalytic mechanism for chlorpyrifos degradation by CPD was proposed. Conclusion: The novel enzyme CPD was capable of hydrolyze chlorpyrifos and Ser155 played key role during degradation of chlorpyrifos.
Asunto(s)
Paracoccus/enzimología , Cloropirifos/metabolismo , Esterasas/metabolismo , Organofosfatos/metabolismo , Biodegradación Ambiental , Catálisis , Mutagénesis , Clonación Molecular , Análisis de Secuencia , Esterasas/aislamiento & purificación , Esterasas/genética , Hidrólisis , Metales/metabolismoRESUMEN
An endo-polygalacturonase secreted by Aspergillus sojae was characterized after being purified to homogeneity from submerged cultures with orange peel as the sole carbon source by gel filtration and ion-exchange chromatographies. According to SDS-PAGE and analytical isoelectric focusing analyses, the enzyme presents a molecular weight of 47 kDa and pI value of 4.2. This enzyme exhibits considerable stability under highly acidic to neutral conditions (pH 1.5-6.5) and presents a half-life of 2 h at 50°C. Besides its activity towards pectin and polygalacturonic acid, the enzyme displays pectin-releasing activity, acting best in a pH range of 3.3-5.0. Thin-layer chromatographic analysis revealed that tri-galacturonate is the main enzymatic end product of polygalacturonic acid hydrolysis, indicating that it is an endo-polygalacturonase. The enzyme exhibits Michaelis-Menten kinetics, with KM and VMAX values of 0.134 mg/mL and 9.6 µmol/mg/min, respectively, and remained stable and active in the presence of SO2, ethanol, and various cations assayed except Hg2+.
Asunto(s)
Aspergillus/enzimología , Poligalacturonasa/química , Poligalacturonasa/aislamiento & purificación , Poligalacturonasa/metabolismo , Carbono/metabolismo , Cromatografía en Gel/métodos , Cromatografía por Intercambio Iónico/métodos , Cromatografía en Capa Delgada/métodos , Citrus sinensis/química , Electroforesis en Gel de Poliacrilamida/métodos , Pruebas de Enzimas/métodos , Estabilidad de Enzimas/efectos de los fármacos , Etanol/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Ácidos Hexurónicos/metabolismo , Concentración de Iones de Hidrógeno , Focalización Isoeléctrica/métodos , Cinética , Metales/metabolismo , Peso Molecular , Pectinas/metabolismo , Dióxido de Azufre/metabolismo , Temperatura , Factores de TiempoRESUMEN
This work presents an inexpensive, simple and fast procedure to purify trypsin based on affinity binding with ferromagnetic particles of azocasein composite (mAzo). Crude extract was obtained from intestines of fish Nile tilapia (Oreochromis niloticus) homogenized in buffer (01g tissue/ml). This extract was exposed to 100mg of mAzo and washed to remove unbound proteins by magnetic field. Trypsin was leached off under high ionic strength (3M NaCl). Preparation was achieved containing specific activity about 60 times higher than that of the crude extract. SDS-PAGE showed that the purified protein had molecular weight (24kDa) in concordance with the literature for the Nile tilapia trypsin. The mAzo composite can be reused and applied to purify trypsin from other sources.
Asunto(s)
Caseínas/química , Cíclidos/metabolismo , Intestinos/enzimología , Tripsina/aislamiento & purificación , Animales , Fraccionamiento Químico , Proteínas de Peces/química , Proteínas de Peces/aislamiento & purificación , Hierro/química , Nanopartículas de Magnetita/química , Peso Molecular , Tripsina/químicaRESUMEN
Chitin synthases are highly important enzymes in nature, where they synthesize structural components in species belonging to different eukaryotic kingdoms, including kingdom Fungi. Unfortunately, their structure and the molecular mechanism of synthesis of their microfibrilar product remain largely unknown, probably because no fungal active chitin synthases have been isolated, possibly due to their extreme hydrophobicity. In this study we have turned to the heterologous expression of the transcript from a small chitin synthase of Rhizopus oryzae (RO3G_00942, Chs1) in Escherichia coli. The enzyme was active, but accumulated mostly in inclusion bodies. High concentrations of arginine or urea solubilized the enzyme, but their dilution led to its denaturation and precipitation. Nevertheless, use of urea permitted the purification of small amounts of the enzyme. The properties of Chs1 (Km, optimum temperature and pH, effect of GlcNAc) were abnormal, probably because it lacks the hydrophobic transmembrane regions characteristic of chitin synthases. The product of the enzyme showed that, contrasting with chitin made by membrane-bound Chs's and chitosomes, was only partially in the form of short microfibrils of low crystallinity. This approach may lead to future developments to obtain active chitin synthases that permit understanding their molecular mechanism of activity, and microfibril assembly.
Asunto(s)
Quitina Sintasa/biosíntesis , Quitina/biosíntesis , Rhizopus/enzimología , Arginina/química , Quitina/genética , Quitina Sintasa/genética , Escherichia coli/genética , Regulación Fúngica de la Expresión Génica , Rhizopus/genética , Urea/químicaRESUMEN
Background: Xylanases and β-D-xylosidases are the most important enzymes responsible for the degradation of xylan, the second main constituent of plant cell walls. Results: In this study, the main extracellular xylanase (XYL I) and p-xylosidase (BXYL I) from the fungus Penicillium janczewskii were purified, characterized and applied for the hydrolysis of different substrates. Their molecular weights under denaturing and non-denaturing conditions were, respectively, 30.4 and 23.6 kDa for XYL I, and 100 and 200 kDa for BXYL I, indicating that the latter is homodimeric. XYL I is highly glycosylated (78%) with optimal activity in pH 6.0 at 65°C, while BXYL I presented lower sugar content (10.5%) and optimal activity in pH 5.0 at 75°C. The half-lives of XYL I at 55, 60 and 65°C were 125,16 and 6 min, respectively. At 60°C, BXYL I retained almost 100% of the activity after 6 h. NH4+,Na+, DTT and β-mercaptoethanol stimulated XYL I, while activation of BXYL I was not observed. Interestingly, XYL I was only partially inhibited by Hg2+, while BXYL I was completely inhibited. Xylobiose, xylotriose and larger xylooligosaccharides were the main products from xylan hydrolysis by XYL I. BXYL I hydrolyzed xylobiose and larger xylooligosaccharides with no activity against xylans. Conclusion: The enzymes act synergistically in the degradation of xylans, and present industrial characteristics especially in relation to optimal activity at high temperatures, prolonged stability of BXYL I at 60°C, and stability of XYL I in wide pH range.
Asunto(s)
Penicillium/enzimología , Xilosidasas/aislamiento & purificación , Xilosidasas/metabolismo , Temperatura , Estabilidad de Enzimas , Carbohidratos , Electroforesis , Concentración de Iones de Hidrógeno , Hidrólisis , Peso MolecularRESUMEN
Derivatized-agarose supports are suitable for enzyme immobilization by different methods, taking advantage of different physical, chemical and biological conditions of the protein and the support. In this study, agarose particles were modified with MANAE, PEI and glyoxyl groups and evaluated to stabilize polygalacturonase from Streptomyces halstedii ATCC 10897. A new immobilized biocatalyst was developed using glyoxyl-agarose as support; it exhibited high performance in degrading polygalacturonic acid and releasing oligogalacturonides. Maximal enzyme activity was detected at 5h of reaction using 0.05g/mL of immobilized biocatalyst, which released 3mg/mL of reducing sugars and allowed the highest product yield conversion and increased stability. These results are very favorable for pectin degradation with reusability up to 18 successive reactions (90h) and application in juice clarification. Plum (4.7°Bx) and grape (10.6°Bx) juices were successfully clarified, increasing reducing sugars content and markedly decreasing turbidity and viscosity.
Asunto(s)
Manipulación de Alimentos/métodos , Jugos de Frutas y Vegetales/análisis , Pectinas/metabolismo , Poligalacturonasa/metabolismo , Sefarosa/química , Estabilidad de Enzimas , Enzimas Inmovilizadas/química , Frutas/química , Frutas/enzimología , Glioxilatos/química , Concentración de Iones de Hidrógeno , Poligalacturonasa/química , Prunus domestica/química , Prunus domestica/enzimología , Vitis/química , Vitis/enzimologíaRESUMEN
Background Two xylanases, Xyl I and Xyl II, were purified from the crude extracellular extract of a Trichoderma inhamatum strain cultivated in liquid medium with oat spelts xylan. Results The molecular masses of the purified enzymes estimated by SDS-PAGE and gel filtration were, respectively, 19 and 14 kDa for Xyl I and 21 and 14.6 kDa for Xyl II. The enzymes are glycoproteins with optimum activity at 50°C in pH 5.0-5.5 for Xyl I and 5.5 for Xyl II. The xylanases were very stable at 40°C and in the pH ranges from 4.5-6.5 for Xyl I and 4.0-8.0 for Xyl II. The ion Hg2+ and the detergent SDS strongly reduced the activity while 1,4-dithiothreitol stimulated both enzymes. The xylanases showed specificity for xylan, Km and Vmax of 14.5, 1.6 mg·mL-1 and 2680.2 and 462.2 U·mg of protein-1 (Xyl I) and 10.7, 4.0 mg·mL-1 and 4553.7 and 1972.7 U·mg of protein-1 (Xyl II) on oat spelts and birchwood xylan, respectively. The hydrolysis of oat spelts xylan released xylobiose, xylotriose, xylotetrose and larger xylooligosaccharides. Conclusions The enzymes present potential for application in industrial processes that require activity in acid conditions, wide-ranging pH stability, such as for animal feed, or juice and wine industries.
Asunto(s)
Trichoderma/enzimología , Endo-1,4-beta Xilanasas/aislamiento & purificación , Estabilidad de Enzimas , Endo-1,4-beta Xilanasas/químicaRESUMEN
Bromelain is a set of proteolytic enzymes found in pineapple (Ananas comosus) tissues such as stem, fruit and leaves. Because of its proteolytic activity, bromelain has potential applications in the cosmetic, pharmaceutical, and food industries. The present study focused on the recovery of bromelain from pineapple peel by liquid-liquid extraction in aqueous two-phase micellar systems (ATPMS), using Triton X-114 (TX-114) and McIlvaine buffer, in the absence and presence of electrolytes CaCl2 and KI; the cloud points of the generated extraction systems were studied by plotting binodal curves. Based on the cloud points, three temperatures were selected for extraction: 30, 33, and 36°C for systems in the absence of salts; 40, 43, and 46°C in the presence of KI; 24, 27, and 30°C in the presence of CaCl2 . Total protein and enzymatic activities were analyzed to monitor bromelain. Employing the ATPMS chosen for extraction (0.5 M KI with 3% TX-114, at pH 6.0, at 40°C), the bromelain extract stability was assessed after incorporation into three cosmetic bases: an anhydrous gel, a cream, and a cream-gel formulation. The cream-gel formulation presented as the most appropriate base to convey bromelain, and its optimal storage conditions were found to be 4.0 ± 0.5°C. The selected ATPMS enabled the extraction of a biomolecule with high added value from waste lined-up in a cosmetic formulation, allowing for exploration of further cosmetic potential.
Asunto(s)
Ananas/enzimología , Bromelaínas/química , Bromelaínas/aislamiento & purificación , Fraccionamiento Químico/métodos , Cosméticos/química , Micelas , BiotecnologíaRESUMEN
Disruption of protein digestion in insects by specific endoprotease inhibitors is being regarded as an alternative to conventional insecticides for pest control. To optimize the effectiveness of this strategy, the understanding of the endoprotease diversity of the target insect is crucial. In this sense, a membrane-bound trypsin-like enzyme from the gut of Anticarsia gemmatalis fifth-instar larvae was purified. Non-soluble fraction of the gut extract was solubilized with 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) and subjected to a p-aminobenzamidine affinity chromatography followed by anion-exchange chromatography. The yield of the purified enzyme was 11% with a purification factor of 143 and a final specific activity of 18.6 µM min.-1 mg-1 protein using N-α-benzoyl-L- Arg-p-nitroanilide (L-BApNA) as substrate. The purified sample showed a single band with proteolytic activity active and apparent molecular mass of 25 kDa on SDS-PAGE. Molecular mass determined by MALDI-TOF mass spectrometry was 28,632 ± 26 Da. Although the low recovery and the difficulties in purifying large enzyme amounts limited its further characterization, the results contribute for the understanding of the proteases present on A. gemmatalis gut, which are potential targets for natural or specifically designed protease inhibitors.
Comprometer a digestão de proteínas dos insetos pelo uso de inibidores específicos de endoproteases tem sido amplamente estudado como um método de controle de pragas alternativo ao uso dos inseticidas convencionais. No processo de otimização desta estratégia, o conhecimento da diversidade das endoproteases do inseto alvo torna-se crucial. Neste sentido, uma enzima "tipo-tripsina" ligada à membrana obtida do intestino de larvas do 5° instar de A. gemmatalis foi purificada. A fração insolúvel do extrato do intestino foi solubilizada com 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) e submetida à uma cromatografia de afinidade em uma coluna de p-aminobenzamidina, seguida por uma cromatografia de troca-aniônica. O rendimento da enzima purificada foi de 11% com fator de purificação de 143 e uma atividade específica final de 18.6 µM min.-1 mg-1 de proteína usando N-α-benzoyl-L- Arg-p-nitroanilide (L-BApNA) como substrato. Após a separação da amostra purificada por SDS-PAGE e incubação subsequente com caseína, uma única banda ativa com massa molecular aparente de 25 kDa foi observada. A massa molecular determinada por espectrometria de massa (MALDI-TOF) foi de 28,632 ± 26 Da. O baixo rendimento e as dificuldades em purificar grandes quantidades da enzima limitaram caracterização complementar. A observação desta enzima, no entanto, é mais uma etapa no processo de conhecer as endoproteases presentes no intestino de A. gemmatalis, alvos potenciais de inibidores de proteases naturais ou especificamente projetados.
Asunto(s)
Animales , Glycine max , TripsinaRESUMEN
After harvesting litchi, the red color of the fruit pericarp is rapidly lost resulting in discoloration and browning during storage and marketing. The loss of the red color is caused by the degradation or loss of stability of anthocyanins. The action of peroxidase and polyphenoloxidase is usually related to the browning and discoloration of fruits of various species. This study aimed to evaluate the influence of pH and temperature on peroxidase and polyphenoloxidase activities, in a partially purified preparation of pericarp of the litchi cultivar Bengal. Fruits were harvested at the ripe stage and polyphenoloxidase was partially purified by sequential saturation in 80% ammonium sulfate. At concentrations of 40-50% and 60-70% ammonium sulfate the activities of polyphenoloxidase and peroxidase were, respectively, 124 times and 158 times higher than in the crude extract. The activity of peroxidase and polyphenoloxidase was maximum at pH 6.5 and 7.0, respectively, and no activity was detected at pH 2.5 and 9.5. Pre-incubation of the enzyme extract for 45 min at pH 2.5 or 9.5 completely inactivated the enzymes, with the highest degree of efficiency at pH 2.5. Peroxidase activity was highest at 70ºC and remained active for a period of 120 min at 70 and 80ºC. Peroxidase became completely inactive when maintained at 90ºC for 10 min or 1 min at 100ºC. Polyphenoloxidase activity was highest at 20ºC and remained active for a period of 120 min at 40 and 50ºC and was inactivated after 10 min at 60ºC. Due to the high temperature of inactivation of the peroxidase and polyphenoloxidase activities, the enzymes can be inactivated more easily in fruits using acid or alkaline solutions.
Após a colheita do fruto, a cor vermelha do pericarpo da lichia é rapidamente perdida, o que resulta em descoloração e escurecimento durante o armazenamento e comercialização. A perda da cor vermelha é devido à degradação de antocianinas ou à perda de sua estabilidade. Usualmente, a ação da peroxidase e polifenoloxidase está relacionada ao escurecimento e à descoloração de várias frutas. Avaliou-se a influência do pH e da temperatura na atividade da peroxidase e polifenoloxidase em uma preparação purificada parcial de pericarpo de cultivar Bengal. Os frutos foram colhidos no estádio vermelho maduro. A polifenoloxidase foi parcialmente purificada por saturação seqüencial até 80% de sulfato de amônio. Na concentração de 40-50% e de 60-70% de sulfato de amônio, a atividade da polifenoloxidase e peroxidase foi 124 e 158 vezes maior vezes maior do que a encontrada no extrato cru. A peroxidase e polifenoloxidase apresentaram ótima atividade em pH 6,5 e 7,0 e nenhuma atividade foi detectada a pH 2,5 e 9,5. A pré-incubação do extrato das enzimas até 45 min a pH 2,5 ou 9,5 inativou completamente as enzimas, sendo que o maior grau de eficiência ocorreu em pH 2,5. A peroxidase apresentou maior atividade a 70ºC, permanecendo ativa durante um período de 120 min a 70 e 80ºC. A peroxidase tornou-se completamente inativa, quando aquecida durante 10 min a 90ºC ou durante 1 min a 100ºC. A polifenoloxidase apresentou maior atividade a 20ºC, permanecendo ativa durante um período de 120 min a 40 e 50ºC e inativada aos 10 min a 60ºC. Devido à alta temperatura para inativação, a atividade da peroxidase e polifenoloxidase pode ser reduzida, imergindo os frutos em soluções ácidas ou alcalinas.
RESUMEN
After harvesting litchi, the red color of the fruit pericarp is rapidly lost resulting in discoloration and browning during storage and marketing. The loss of the red color is caused by the degradation or loss of stability of anthocyanins. The action of peroxidase and polyphenoloxidase is usually related to the browning and discoloration of fruits of various species. This study aimed to evaluate the influence of pH and temperature on peroxidase and polyphenoloxidase activities, in a partially purified preparation of pericarp of the litchi cultivar Bengal. Fruits were harvested at the ripe stage and polyphenoloxidase was partially purified by sequential saturation in 80% ammonium sulfate. At concentrations of 40-50% and 60-70% ammonium sulfate the activities of polyphenoloxidase and peroxidase were, respectively, 124 times and 158 times higher than in the crude extract. The activity of peroxidase and polyphenoloxidase was maximum at pH 6.5 and 7.0, respectively, and no activity was detected at pH 2.5 and 9.5. Pre-incubation of the enzyme extract for 45 min at pH 2.5 or 9.5 completely inactivated the enzymes, with the highest degree of efficiency at pH 2.5. Peroxidase activity was highest at 70ºC and remained active for a period of 120 min at 70 and 80ºC. Peroxidase became completely inactive when maintained at 90ºC for 10 min or 1 min at 100ºC. Polyphenoloxidase activity was highest at 20ºC and remained active for a period of 120 min at 40 and 50ºC and was inactivated after 10 min at 60ºC. Due to the high temperature of inactivation of the peroxidase and polyphenoloxidase activities, the enzymes can be inactivated more easily in fruits using acid or alkaline solutions.
Após a colheita do fruto, a cor vermelha do pericarpo da lichia é rapidamente perdida, o que resulta em descoloração e escurecimento durante o armazenamento e comercialização. A perda da cor vermelha é devido à degradação de antocianinas ou à perda de sua estabilidade. Usualmente, a ação da peroxidase e polifenoloxidase está relacionada ao escurecimento e à descoloração de várias frutas. Avaliou-se a influência do pH e da temperatura na atividade da peroxidase e polifenoloxidase em uma preparação purificada parcial de pericarpo de cultivar Bengal. Os frutos foram colhidos no estádio vermelho maduro. A polifenoloxidase foi parcialmente purificada por saturação seqüencial até 80% de sulfato de amônio. Na concentração de 40-50% e de 60-70% de sulfato de amônio, a atividade da polifenoloxidase e peroxidase foi 124 e 158 vezes maior vezes maior do que a encontrada no extrato cru. A peroxidase e polifenoloxidase apresentaram ótima atividade em pH 6,5 e 7,0 e nenhuma atividade foi detectada a pH 2,5 e 9,5. A pré-incubação do extrato das enzimas até 45 min a pH 2,5 ou 9,5 inativou completamente as enzimas, sendo que o maior grau de eficiência ocorreu em pH 2,5. A peroxidase apresentou maior atividade a 70ºC, permanecendo ativa durante um período de 120 min a 70 e 80ºC. A peroxidase tornou-se completamente inativa, quando aquecida durante 10 min a 90ºC ou durante 1 min a 100ºC. A polifenoloxidase apresentou maior atividade a 20ºC, permanecendo ativa durante um período de 120 min a 40 e 50ºC e inativada aos 10 min a 60ºC. Devido à alta temperatura para inativação, a atividade da peroxidase e polifenoloxidase pode ser reduzida, imergindo os frutos em soluções ácidas ou alcalinas.
RESUMEN
Humicola grisea var. thermoidea produces two forms of extracellular xylanase. The component form 1 was purified using the electroelution method, due to the very small production of this extracellular enzyme. The apparent molecular mass was 61.8 kDa by SDS-PAGE.
Humicola grisea var. thermoidea produz duas formas de xilanase extracelular. A componente forma 1 foi purificada usando o método de eletroeluição devido à baixa produção desta enzima extracelular. A aparente massa molar foi determinada 61,8 kDa por SDS-PAGE.