Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 299
Filtrar
1.
Emerg Microbes Infect ; : 2406276, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39286988

RESUMEN

Although brought to the forefront in the 1980s with the AIDS pandemic, microsporidia infecting humans are still little known. Enterocytozoon bieneusi, by far the most frequent microsporidia species causing diseases in humans, is responsible for intestinal illness in both non- and immunocompromised patients. This species presents an astonishing genetic diversity with more than 500 genotypes described, some of which having a strong zoonotic potential. Indeed, E. bieneusi infects a broad array of hosts, from wild to domestic animals. This emerging eukaryotic pathogen has thus been associated with foodborne/waterborne outbreaks. Several molecular assays have been developed to enhance its diagnosis or for epidemiological purposes, providing valuable new data. Here, we propose an overview of the current knowledge on this major species among the microsporidia, so far rather neglected in human medicine.

2.
Front Vet Sci ; 11: 1427690, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39268515

RESUMEN

Introduction: Enterocytozoon bieneusi is one of the most important zoonotic pathogens, responsible for nearly 90% of human infections. Its host spectrum is broad in China, encompassing humans, non-human primates, domestic animals, wildlife, and wastewater. Wild rodents have the potential to act as carriers of E. bieneusi, facilitating the parasite's transmission to humans and domestic animals. Methods: The present study involved the collection of 344 wild rodents, representing nine species, from three provinces in China. The prevalence and genotypes of E. bieneusi were determined through amplification of the ITS gene. Evolutionary analysis was conducted using Mega 5.0 with the neighbor-joining method (Kimura 2-parameter model, 1,000 replicates). Results: Among the sampled wild rodents, 41 (11.92%) were tested positive for E. bieneusi. Rattus flavipectus exhibited the highest prevalence (11/39), while Bandicota indica and Rattus rattus sladeni showed no infections (0/39 and 0/5, respectively), highlighting significant differences. Environmental factors strongly influenced E. bieneusi infection; rodents residing in lake beaches (10.27%, 15/146) and fields (19.95%, 18/95) were more susceptible compared to those in mountainous areas (7.77%, 8/103). The study identified four known genotypes (D, Type IV, SDD5, PigEBITS7) and five novel genotypes (HNRV-1 to HNRV-3, GXRL-1, GXRL-2) in the investigated wild rodents, with Genotype D exhibiting the highest prevalence. Discussion: Remarkably, this study reports the presence of E. bieneusi, R. flavipectus, M. fortis, A. agrarius, R. losea, and N. lotipes for the first time. These findings underscore the common occurrence of E. bieneusi infection in wild rodents in China, highlighting its diverse nature and significant potential for zoonotic transmission. Hence, it is imperative to conduct a comprehensive epidemiological investigation of rodent infection with E. bieneusi, particularly focusing on wild rodents that are closely associated with humans. Additionally, developing appropriate measures and monitoring strategies to minimize the risk of infection is essential.

3.
Front Vet Sci ; 11: 1426384, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39119351

RESUMEN

Introduction: Enterocytozoon bieneusi, an obligatory intracellular fungus, is prevalent among animals and humans. Due to their close interaction with humans and their extensive regional distribution, brown rats (Rattus norvegicus) are important pathogen reservoirs. To assess the zoonotic transmission potential of E. bieneusi, a molecular investigation was conducted on 817 R. norvegicus from four cities in Heilongjiang Province, China. Methods: A total of 817 R. norvegicus were collected from four cities in Heilongjiang Province, China. The genotyping of E. bieneusi was conducted through PCR amplification of the small subunit ribosomal RNA (SSU rRNA)'s internal transcribed spacer (ITS) segments. Phylogenetic and similarity analyses were used to examine zoonotic potential and genetic characteristics of the E. bieneusi-positive specimens. Results: Among the 817 R. norvegicus, the total infection rate was 33.3% (272/817). Seventy-five genotypes were identified, including 14 known genotypes D (n = 167), A (n = 15), HLJ-CP1 (n = 12), WR8 (n = 6), EbpC (n = 2), BEB6 (n = 1), CS-4 (n = 1), CHPM1 (n = 1), Henan-II (n = 1), HNH-22 (n = 1), HNH-25 (n = 1), I (n = 1), JLD-XI (n = 1), SDD5 (n = 1), and 61 novel genotypes designated as SHWR1 (n = 10), SYSWR1 (n = 2), and SHWR2 to SHWR17, SYSWR2 to SYSWR36 and QTHWR1 to QTHWR8 (n = 1, each). Moreover, 10 samples exhibited mixed genotype infections, including D + A (n = 3), D + EbpC (n = 1), D + HLJ-CP1 (n = 1), D + SHWR1 (n = 1), D + SHWR16 (n = 1), D + SHWR17 (n = 1), SDD5 + WR8 (n = 1), and CS-4 + SYSWR36 (n = 1). Phylogenetic analysis grouped the genotypes into three main groups: group 1 (n = 67), group 2 (n = 5), and group 9 (n = 3). Discussion: The high prevalence and genetic diversity of E. bieneusi in Heilongjiang Province's R. norvegicus imply that these animals spread the pathogen. The R. norvegicus that E. bieneusi carries can spread zoonotic disease, making it a serious hazard to the local human population. Therefore, it is imperative to raise awareness about the dangers posed by R. norvegicus and implement measures to reduce their population to prevent environmental contamination.

4.
Front Cell Infect Microbiol ; 14: 1409685, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957795

RESUMEN

Introduction: Wild rodents can serve as reservoirs or carriers of E. bieneusi, thereby enabling parasite transmission to domestic animals and humans. This study aimed to investigate the prevalence of E. bieneusi in wild rodents from the Inner Mongolian Autonomous Region and Liaoning Province of China. Moreover, to evaluate the potential for zoonotic transmission at the genotype level, a genetic analysis of the isolates was performed. Methods: A total of 486 wild rodents were captured from two provinces in China. Polymerase chain reaction (PCR) was performed to amplify the vertebrate cytochrome b (cytb) gene in the fecal DNA of the rodents to detect their species. The genotype of E. bieneusi was determined via PCR amplification of the internal transcribed spacer (ITS) region of rDNA. The examination of genetic characteristics and zoonotic potential requires the application of similarity and phylogenetic analysis. Results: The infection rates of E. bieneusi in the four identified rodent species were 5.2% for Apodemus agrarius (n = 89), 4.5% for Cricetulus barabensis (n = 96), 11.3% for Mus musculus (n = 106), and 38.5% for Rattus norvegicus (n = 195). Infection was detected at an average rate of 17.4% among 486 rodents. Of the 11 identified genotypes, nine were known: SHR1 (detected in 32 samples), D (30 samples), EbpA (9 samples), PigEbITS7 (8 samples), HNR-IV (6 samples), Type IV (5 samples), HNR-VII (2 samples), HNH7 (1 sample), and HNPL-V (1 sample). Two novel genotypes were also discovered, NMR-I and NMR-II, each comprising one sample. The genotypes were classified into group 1 and group 13 via phylogenetic analysis. Discussion: Based on the initial report, E. bieneusi is highly prevalent and genetically diverse in wild rodents residing in the respective province and region. This indicates that these animals are crucial for the dissemination of E. bieneusi. Zoonotic E. bieneusi-carrying animals present a significant hazard to local inhabitants. Therefore, it is necessary to increase awareness regarding the dangers presented by these rodents and reduce their population to prevent environmental contamination.


Asunto(s)
Animales Salvajes , Enterocytozoon , Heces , Genotipo , Especificidad del Huésped , Microsporidiosis , Filogenia , Roedores , Zoonosis , Animales , Enterocytozoon/genética , Enterocytozoon/aislamiento & purificación , Enterocytozoon/clasificación , China/epidemiología , Zoonosis/microbiología , Zoonosis/transmisión , Microsporidiosis/epidemiología , Microsporidiosis/veterinaria , Microsporidiosis/microbiología , Roedores/microbiología , Heces/microbiología , Animales Salvajes/microbiología , Prevalencia , Citocromos b/genética , Reservorios de Enfermedades/microbiología , Ratones , ADN Espaciador Ribosómico/genética , Humanos , Enfermedades de los Roedores/microbiología , Enfermedades de los Roedores/epidemiología , Reacción en Cadena de la Polimerasa , ADN de Hongos/genética , Ratas
5.
Med Mycol ; 62(8)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39020251

RESUMEN

Enterocytozoon bieneusi microsporidia are emerging pathogens infecting a wide range of vertebrate and invertebrate hosts, known to have zoonotic features since they infect both wild and domestic animals, and humans. Despite their significance, there is very limited epidemiological data on microsporidia in hedgehogs, especially European hedgehogs (Erinaceus europaeus) and long-eared hedgehogs (Hemiechinus auritus), the former known as synantropic hedgehogs, and the latter suited as pets. As such, the present study aimed to assess the presence of E. bieneusi in hedgehogs from Portugal. For this purpose, fecal samples from 110 hedgehogs of three species-E. europaeus (n = 106), H. auritus (n = 1), and Atelerix albiventris (n = 3)-were collected and tested for E. bieneusi by PCR targeting the internal transcribed spacer region and the flanking small and large subunits of the rRNA. We found an overall occurrence of 22.7% (25/110; 95% confidence interval [CI]: 15.28-31.70), with 22.6% (24/106; 95% [CI]: 15.08-31.79) in E. europaeus, 100% (1/1) in H. auritus, and 0% in A. albiventris. Interestingly, three novel genotypes were identified, all belonging to the potentially zoonotic Group 1. Our findings highlight the importance of hedgehogs as potential reservoirs for E. bieneusi and emphasize the need for further research to understand their role in transmission dynamics and assess the associated risks to public and veterinary health.


Synanthropic hedgehogs were tested for Enterocytozoon bieneusi, the main cause of human microsporidiosis. Results showed 22.7% of hedgehogs were shedding E. bieneusi spores, with three new genotypes from the zoonotic Group 1. Hedgehogs may transmit to humans/animals, warranting more research.


Asunto(s)
ADN de Hongos , Enterocytozoon , Heces , Erizos , Microsporidiosis , Erizos/microbiología , Enterocytozoon/genética , Enterocytozoon/aislamiento & purificación , Enterocytozoon/clasificación , Animales , Microsporidiosis/veterinaria , Microsporidiosis/epidemiología , Microsporidiosis/microbiología , Portugal/epidemiología , Heces/microbiología , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética , Reacción en Cadena de la Polimerasa , Filogenia , Análisis de Secuencia de ADN , Genotipo
6.
Vet Sci ; 11(7)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39058011

RESUMEN

In order to investigate the infection status and genotypes of Enterocytozoon bieneusi (E. bieneusi) in sheep and goats in Jiangsu Province, a total of 786 fresh fecal samples from 18 farms across five regions in Jiangsu were collected and examined for the presence of E. bieneusi, and the genotype of E. bieneusi was examined using nested-PCR and sequencing of the ribosomal internal transcribed spacer. The results showed that E. bieneusi was detected in the fecal samples of sheep and goats in all regions, with infection rates ranging from 23.65% to 42.81%. The overall infection rate was 36.51% (287/786). The infection rate of E. bieneusi showed no significant difference between sheep and goats, as well as among different ages of animals (p > 0.05), but showed a significant difference in sheep and goats with different health conditions (p < 0.05). The positive products were amplified and cloned and subjected to sequenced analysis. Six genotypes, BEB6, CHG2, CHG3, CHC8, CHG14, and COS-I, were found. Phylogenetic analysis indicated that the six genotypes belonged to Group 2, which had previously been described as a non-zoonotic group.

7.
Parasite ; 31: 37, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38963405

RESUMEN

Enterocytozoon bieneusi is an obligate intracellular microsporidian parasite with a worldwide distribution. As a zoonotic pathogen, E. bieneusi can infect a wide range of wildlife hosts through the fecal-oral route. Although the feces of flying squirrels (Trogopterus xanthipes) are considered a traditional Chinese medicine (as "faeces trogopterori"), no literature is available on E. bieneusi infection in flying squirrels to date. In this study, a total of 340 fresh flying squirrel fecal specimens from two captive populations were collected in Pingdingshan city, China, to detect the prevalence of E. bieneusi and assess their zoonotic potential. By nested PCR amplification of the ITS gene, six specimens tested positive, with positive samples from each farm, with an overall low infection rate of 1.8%. The ITS sequences revealed three genotypes, including known genotype D and two novel genotypes, HNFS01 and HNFS02. Genotype HNFS01 was the most prevalent (4/6, 66.7%). Phylogenetic analysis showed that all genotypes clustered into zoonotic Group 1, with the novel genotypes clustering into different subgroups. To our knowledge, this is the first report of E. bieneusi infection in flying squirrels, suggesting that flying squirrels could act as a potential reservoir and zoonotic threat for E. bieneusi transmission to humans in China.


Title: Occurrence et génotypage d'Enterocytozoon bieneusi chez les écureuils volants (Trogopterus xanthipes) de Chine. Abstract: Enterocytozoon bieneusi est un parasite microsporidien intracellulaire obligatoire présent dans le monde entier. En tant qu'agent pathogène zoonotique, E. bieneusi peut infecter un large éventail d'hôtes sauvages par la voie fécale-orale. Bien que les excréments d'écureuils volants (Trogopterus xanthipes) soient considérés comme un ingrédient de médecine traditionnelle chinoise (comme « faeces trogopterori ¼), aucune littérature n'est disponible à ce jour sur l'infection par E. bieneusi chez les écureuils volants. Dans cette étude, un total de 340 spécimens fécaux frais d'écureuils volants provenant de deux populations captives ont été collectés dans la ville de Pingdingshan, en Chine, pour détecter la prévalence d'E. bieneusi et évaluer leur potentiel zoonotique. Par amplification PCR nichée du gène ITS, six échantillons se sont révélés positifs, avec des échantillons positifs dans chaque ferme, et un taux d'infection global faible, à 1,8 %. Les séquences ITS ont révélé trois génotypes, dont le génotype D connu et deux nouveaux génotypes, HNFS01 et HNFS02. Le génotype HNFS01 était le plus répandu (4/6, 66,7 %). L'analyse phylogénétique a montré que tous les génotypes se regroupaient dans le groupe zoonotique 1, les nouveaux génotypes se regroupant en différents sous-groupes. À notre connaissance, il s'agit du premier rapport d'infection par E. bieneusi chez des écureuils volants, ce qui suggère que les écureuils volants pourraient agir comme un réservoir potentiel et une menace zoonotique pour la transmission d'E. bieneusi aux humains en Chine.


Asunto(s)
Enterocytozoon , Heces , Genotipo , Microsporidiosis , Filogenia , Sciuridae , Animales , Sciuridae/microbiología , Sciuridae/parasitología , Enterocytozoon/genética , Enterocytozoon/aislamiento & purificación , Enterocytozoon/clasificación , China/epidemiología , Microsporidiosis/veterinaria , Microsporidiosis/epidemiología , Microsporidiosis/microbiología , Heces/microbiología , Heces/parasitología , Prevalencia , Zoonosis , Reacción en Cadena de la Polimerasa/veterinaria , ADN de Hongos/genética , Enfermedades de los Roedores/epidemiología , Enfermedades de los Roedores/microbiología , Enfermedades de los Roedores/parasitología , ADN Espaciador Ribosómico/genética , Animales Salvajes/microbiología
8.
Animals (Basel) ; 14(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38997986

RESUMEN

Enterocytozoon bieneusi, an intracellular eukaryote closely related to fungi, is recognized as a significant pathogen affecting humans, particularly those with compromised immune systems. While its transmission routes are still not fully elucidated, fecal-oral transmission remains the primary one. With a wide host range, the zoonotic potential of E. bieneusi is a concern, albeit direct evidence of animal-to-human transmission remains scarce. Genotyping based on the internal transcribed spacer (ITS) region facilitates the delineation of genetic diversity, with potentially zoonotic genotypes predominantly associated with Groups 1 and 2. Despite the broad spectrum of susceptible animal hosts, research into microsporidian infection among zoo animals remains limited. This study aimed to evaluate the occurrence of E. bieneusi infection across diverse captive animals, focusing on zoo settings in Portugal. Fecal samples were collected from a variety of animals, and molecular detection of E. bieneusi was conducted using nested PCR targeting the ITS region. Of 127 fecal samples, 1.57% (95% CI: 0.19-5.57) tested positive for E. bieneusi, with non-human primates (NHP's) exhibiting an 18.18% (95% CI: 2.28-51.78) occurrence. Phylogenetic analysis revealed clustering within Group 2 genotypes, indicating potential zoonotic implications. This study highlights the need for further research to understand the epidemiology of E. bieneusi in zoo environments and its potential transmission pathways to humans.

9.
BMC Vet Res ; 20(1): 309, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987757

RESUMEN

BACKGROUND: Parasites Entamoeba spp., Enterocytozoon bieneusi and Blastocystis are prevalent pathogens causing gastrointestinal illnesses in animals and humans. Consequently, researches on their occurrence, distribution and hosts are crucial for the well-being of both animals and humans. Due to the confined spaces and frequent interaction between animals and humans, animal sanctuaries have emerged as potential reservoirs for these parasites. In this study, the wildlife sanctuary near the Huang Gorge of the Qinling Mountains in northwest China is chosen as an ideal site for parasite distribution research, considering its expansive stocking area and high biodiversity. RESULTS: We collected 191 fecal specimens from 37 distinct wildlife species and extracted genomic DNA. We identified these three parasites by amplifying specific gene regions and analyzed their characteristics and evolutionary relationships. All the parasites exhibited a high overall infection rate, reaching 90.05%. Among them, seven Entamoeba species were identified, accounting for a prevalence of 54.97%, with the highest infection observed in Entamoeba bovis. In total, 11 Enterocytozoon bieneusi genotypes were discovered, representing a prevalence of 35.08%, including three genotypes of human-pathogenic Group 1 and two novel genotypes (SXWZ and SXLG). Additionally, 13 Blastocystis subtypes were detected, showing a prevalence of 74.87% and encompassing eight zoonotic subtypes. All of the above suggests significant possibilities of parasite transmission between animals and humans. CONCLUSIONS: This study investigated the occurrence and prevalence of three intestinal parasites, enhancing our understanding of their genetic diversity and host ranges in northwest China. Furthermore, the distribution of these parasites implies significant potential of zoonotic transmission, underscoring the imperative for ongoing surveillance and implementation of control measures. These efforts are essential to mitigate the risk of zoonotic disease outbreaks originating from wildlife sanctuary.


Asunto(s)
Animales Salvajes , Blastocystis , Entamoeba , Enterocytozoon , Microsporidiosis , Zoonosis , Animales , Enterocytozoon/genética , Enterocytozoon/aislamiento & purificación , China/epidemiología , Blastocystis/genética , Blastocystis/clasificación , Blastocystis/aislamiento & purificación , Animales Salvajes/parasitología , Zoonosis/parasitología , Entamoeba/genética , Entamoeba/aislamiento & purificación , Entamoeba/clasificación , Microsporidiosis/veterinaria , Microsporidiosis/epidemiología , Filogenia , Heces/parasitología , Entamebiasis/veterinaria , Entamebiasis/epidemiología , Entamebiasis/parasitología , Infecciones por Blastocystis/veterinaria , Infecciones por Blastocystis/epidemiología , Infecciones por Blastocystis/transmisión , Infecciones por Blastocystis/parasitología , Prevalencia , Genotipo , Humanos
10.
Vet J ; 306: 106191, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38944378

RESUMEN

Enterocytozoon bieneusi is a widespread intracellular fungus that can infect both humans and animals, making it a significant zoonotic threat. In the current study, a total of 208 fecal samples were assayed to investigate the prevalence of E. bieneusi in pigs reared in Zhejiang Province, China. Employing polymerase chain reaction (PCR) amplification techniques specifically designed to target the internal transcribed spacer (ITS) region of the small subunit ribosomal RNA (rRNA) gene, the results revealed that 78 samples (37.5 %) tested positive for the presence of E. bieneusi. A total of 19 different genotypes of E. bieneusi were detected. Nine of these genotypes were already known: EbpC (n = 36), KIN-1 (n = 10), PigEbITS7 (n = 8), EbpA (n = 6), Henan III (n = 3), PigEbITS5 (n = 2), Henan-IV (n = 1), EbpD (n = 1), and TypeIV (n = 1), and 10 were novel: ZJP-I to ZJP-X (one each). The present investigation revealed that all the nine known genotypes identified in pigs here, have also been previously discovered in humans. Additionally, the novel genotypes of E. bieneusi discovered here were all classified as belonging to Group 1. These findings suggest the potential for cross-species transmission between humans and pigs.


Asunto(s)
Enterocytozoon , Genotipo , Enfermedades de los Porcinos , Zoonosis , Animales , Enterocytozoon/genética , Enterocytozoon/aislamiento & purificación , China/epidemiología , Porcinos , Enfermedades de los Porcinos/microbiología , Enfermedades de los Porcinos/epidemiología , Zoonosis/microbiología , Filogenia , Medición de Riesgo , Heces/microbiología , Humanos , Prevalencia , Microsporidiosis/veterinaria , Microsporidiosis/epidemiología , Microsporidiosis/microbiología , Reacción en Cadena de la Polimerasa/veterinaria , ADN Espaciador Ribosómico/genética , ADN de Hongos/genética
11.
Animals (Basel) ; 14(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38891682

RESUMEN

Crytosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi are important diarrheal pathogens with a global distribution that threatens the health of humans and animals. Despite cattle being potential transmission hosts of these protozoans, the associated risks to public health have been neglected. In the present study, a total of 1155 cattle fecal samples were collected from 13 administrative regions of Heilongjiang Province. The prevalence of Cryptosporidium spp., G. duodenalis, and E. bieneusi were 5.5% (64/1155; 95% CI: 4.2-6.9), 3.8% (44/1155; 95% CI: 2.7-4.9), and 6.5% (75/1155; 95% CI: 5.1-7.9), respectively. Among these positive fecal samples, five Cryptosporidium species (C. andersoni, C. bovis, C. ryanae, C. parvum, and C. occultus), two G. duodenalis assemblages (E and A), and eight E. bieneusi genotypes (BEB4, BEB6, BEB8, J, I, CHS7, CHS8, and COS-I) were identified. Phylogenetic analysis showed that all eight genotypes of E. bieneusi identified in the present study belonged to group 2. It is worth noting that some species/genotypes of these intestinal protozoans are zoonotic, suggesting a risk of zoonotic disease transmission in endemic areas. The findings expanded our understanding of the genetic composition and zoonotic potential of Cryptosporidium spp., G. duodenalis, and E. bieneusi in cattle in Heilongjiang Province.

12.
Parasitol Res ; 123(6): 233, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38850488

RESUMEN

Enterocytozoon bieneusi is a common cause of human microsporidiosis and can infect a variety of animal hosts worldwide. In Thailand, previous studies have shown that this parasite is common in domestic animals. However, information on the prevalence and genotypes of this parasite in other synanthropic wildlife, including bats, remains limited. Several pathogens have been previously detected in bats, suggesting that bats may serve as a reservoir for this parasite. In this study, a total of 105 bat guano samples were collected from six different sites throughout Thailand. Of these, 16 from Chonburi (eastern), Ratchaburi (western), and Chiang Rai (northern) provinces tested positive for E. bieneusi, representing an overall prevalence of 15.2%. Based on ITS1 sequence analysis, 12 genotypes were identified, including two known genotypes (D and type IV) frequently detected in humans and ten novel potentially zoonotic genotypes (TBAT01-TBAT10), all belonging to zoonotic group 1. Lyle's flying fox (Pteropus lylei), commonly found in Southeast Asia, was identified as the host in one sample that was also positive for E. bieneusi. Network analysis of E. bieneusi sequences detected in this study and those previously reported in Thailand also revealed intraspecific divergence and recent population expansion, possibly due to adaptive evolution associated with host range expansion. Our data revealed, for the first time, multiple E. bieneusi genotypes of zoonotic significance circulating in Thai bats and demonstrated that bat guano fertilizer may be a vehicle for disease transmission.


Asunto(s)
Quirópteros , Enterocytozoon , Genotipo , Microsporidiosis , Filogenia , Quirópteros/parasitología , Quirópteros/microbiología , Animales , Tailandia/epidemiología , Enterocytozoon/genética , Enterocytozoon/aislamiento & purificación , Enterocytozoon/clasificación , Microsporidiosis/veterinaria , Microsporidiosis/epidemiología , Microsporidiosis/microbiología , Prevalencia , Humanos , Análisis de Secuencia de ADN , Zoonosis/parasitología , ADN Espaciador Ribosómico/genética , ADN de Hongos/genética
13.
One Health ; 18: 100750, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38798737

RESUMEN

Cryptosporidium spp., Giardia spp. and Enterocytozoon bieneusi are common zoonotic pathogens in humans and animals. Although rodents are important parts of the ecosystem and common hosts for these pathogens, little is known of the distribution, genetic diversity and zoonotic potential of these pathogens in wild rodents. A total of 442 fecal samples were collected from eleven wild rodent species in three provinces of China, and analyzed for these pathogens by PCR and DNA sequencing. The infection rates of Cryptosporidium spp., Giardia spp. and E. bieneusi were 19.9% (88/442), 19.8% (75/378) and 12.2% (54/442), respectively. Altogether, 23 known Cryptosporidium species/genotypes were identified and their distribution varied among different sampling locations or rodent species. Subtyping of the zoonotic Cryptosporidium species identified two novel subtype families XVe and XVf in C. viatorum, the subtype family XIIh and a novel subtype family XIIj in C. ubiquitum, and the subtype family IId in C. parvum. Three Giardia species were identified, including G. microti (n = 57), G. muris (n = 15) and G. duodenalis (n = 3), with G. duodenalis assemblages A and G identified in brown rats in urban areas of Guangdong. In addition, 13 E. bieneusi genotypes including eight known and five novel ones were identified, belonging to Groups 1, 2, 10, 14 and 15. Within nine genotypes in the zoonotic Group 1, common human-pathogenic genotypes D, Type IV, PigEbITS7 and Peru8 were detected only in brown rats and Lesser rice-field rats in urban areas of Guangdong. Apparent host adaptation and geographical differences were observed among Cryptosporidium spp., Giardia spp. and E. bieneusi genotypes in wild rodents in the present study. Furthermore, the zoonotic Cryptosporidium species and E. bieneusi genotypes commonly found here suggest a high zoonotic potential of these pathogens in wild rodents, especially in brown rats in urban areas. Hygiene and One Health measures should be implemented in urban streets and food stores to reduce the possible direct and indirect transmission of these rodent-related pathogens.

14.
Parasite ; 31: 27, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38787023

RESUMEN

Enterocytozoon bieneusi is the most common microsporidian species in humans and can affect over 200 animal species. Considering possible increasing risk of human E. bieneusi infection due to close contact with pet dogs and identification of zoonotic E. bieneusi genotypes, 589 fresh fecal specimens of pet dogs were collected from Yunnan Province, China to determine the occurrence of E. bieneusi, characterize dog-derived E. bieneusi isolates, and assess their zoonotic potential at the genotype level. Enterocytozoon bieneusi was identified and genotyped by PCR and sequencing of the internal transcribed spacer (ITS) region of the ribosomal RNA (rRNA) gene. Twenty-nine specimens (4.9%) were positive. A statistical difference was observed in occurrence rates of E. bieneusi in pet dogs among 11 sampling sites by Fisher's exact test. Fifteen genotypes were identified and all of them phylogenetically belonged to zoonotic group 1, including four known genotypes (EbpC, D, Peru 8, and Henan-III) and 11 novel genotypes. Genotype Henan-III was reported in dogs for the first time. The finding of known genotypes found previously in humans and novel genotypes falling into zoonotic group 1 indicates that dogs may play a role in the transmission of E. bieneusi to humans in the investigated areas.


Title: Occurrence et caractérisation génétique d'Enterocytozoon bieneusi chez les chiens de compagnie dans la province du Yunnan, Chine. Abstract: Enterocytozoon bieneusi est l'espèce de microsporidies la plus répandue chez l'homme et peut affecter plus de 200 espèces animales. Compte tenu du risque accru possible d'infection humaine à E. bieneusi en raison d'un contact étroit avec des chiens de compagnie et de l'identification de génotypes zoonotiques d'E. bieneusi, 589 échantillons fécaux frais de chiens de compagnie ont été collectés dans la province du Yunnan, en Chine, pour déterminer la présence d'E. bieneusi, caractériser les isolats obtenus de chiens, et évaluer leur potentiel zoonotique au niveau du génotype. Enterocytozoon bieneusi a été identifié et génotypé par PCR et séquençage de la région d'espacement transcrit interne (ITS) du gène de l'ARN ribosomal (ARNr). Vingt-neuf échantillons (4,9%) étaient positifs. Une différence statistique a été observée dans les taux de présence d'E. bieneusi chez les chiens de compagnie parmi 11 sites d'échantillonnage par le test exact de Fisher. Quinze génotypes ont été identifiés et tous appartenaient phylogénétiquement au groupe zoonotique 1, dont quatre génotypes connus (EbpC, D, Peru 8 et Henan-III) et 11 nouveaux génotypes. Le génotype Henan-III est signalé pour la première fois chez le chien. La découverte de génotypes connus précédemment trouvés chez l'homme et de nouveaux génotypes appartenant au groupe zoonotique 1 indique que les chiens peuvent jouer un rôle dans la transmission d'E. bieneusi aux humains dans les zones étudiées.


Asunto(s)
Enfermedades de los Perros , Enterocytozoon , Heces , Genotipo , Microsporidiosis , Filogenia , Zoonosis , Perros , Animales , Enterocytozoon/genética , Enterocytozoon/aislamiento & purificación , Enterocytozoon/clasificación , China/epidemiología , Microsporidiosis/veterinaria , Microsporidiosis/epidemiología , Microsporidiosis/microbiología , Enfermedades de los Perros/epidemiología , Enfermedades de los Perros/microbiología , Enfermedades de los Perros/parasitología , Heces/microbiología , Heces/parasitología , Mascotas/microbiología , ADN Espaciador Ribosómico/genética , ADN de Hongos/genética , Humanos , Reacción en Cadena de la Polimerasa/veterinaria , Análisis de Secuencia de ADN
15.
Microorganisms ; 12(5)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38792745

RESUMEN

Cryptosporidium spp. and Microsporidia are opportunistic microorganisms with remarkable zoonotic transmission potential due to their capacity to infect humans and animals. The aim of this study was to evaluate the prevalence of these microorganisms in stool samples of animal and human origin. In total, 369 stool samples (205 from human patients with diarrhea and 164 of animal origin) were included in the study. Cryptosporidium spp. and Microsporidia presence were determined by using multiplex nested PCR. Positive results were analyzed by using Sanger sequencing of the amplicon, utilizing BLASTN and ClustalX software to confirm identification. Cryptosporidium spp. were found in 0.97% and 4.26% of human and animal samples, respectively. Enterocytozoon bieneusi was detected in human and animal stools in 6.82% and 3.05% of the samples, respectively. No associations were found when analyzing the presence of Cryptosporidium spp. and E. bieneusi and the demographic and clinical variables of patients and animals. This study demonstrates the presence of these microorganisms in human and animal samples from different species, and the most interesting findings are the detection of Cryptosporidium spp. in pets (e.g., rodents) that are not usually included in this type of study, and the identification of E. bieneusi in patients with diarrhea without underlying disease.

16.
Vet Res Commun ; 48(4): 2629-2643, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38565798

RESUMEN

Cryptosporidium spp., Enterocytozoon bieneusi, and Giardia duodenalis are common intestinal pathogens that infect humans and animals. To date, research regarding these three protozoa in the Ningxia Hui Autonomous Region (Ningxia) has mostly been limited to a single pathogen, and comprehensive data on mixed infections are unavailable. This study aimed to evaluate the zoonotic potential of these three protozoa. In this study, small subunit ribosomal RNA (SSU rRNA) and 60 kDa glycoprotein (gp60) genes of Cryptosporidium; internal transcribed spacer (ITS) gene of E. bieneusi; and SSU rRNA, glutamate dehydrogenase (gdh), triosephosphate isomerase (tpi), and beta-giardin (bg) genes of G. duodenalis were examined. DNA extraction, polymerase chain reaction, and sequence analysis were performed on fecal samples collected from 320 dairy cattle at three intensive dairy farms in Ningxia in 2021 to determine the prevalence and genetic characteristics of these three protozoa. The findings revealed that 61.56% (197/320) of the samples were infected with at least one protozoan. The overall prevalence of Cryptosporidium was 19.38% (62/320), E. bieneusi was 41.56% (133/320), and G. duodenalis was 29.38% (94/320). This study identified four Cryptosporidium species (C. bovis, C. andersoni, C. ryanae, and C. parvum) and the presence of mixed infections with two or three Cryptosporidium species. C. bovis was the dominant species in this study, while the dominant C. parvum subtypes were IIdA15G1 and IIdA20G1. The genotypes of E. bieneusis were J, BEB4, and I alongside the novel genotypes NX1-NX8, all belonging to group 2, with genotype J being dominant. G. duodenalis assemblages were identified as assemblages E, A, and B, and a mixed infection involving assemblages A + E was identified, with assemblage E being the dominant one. Concurrently, 11 isolates formed 10 different assemblage E multilocus genotypes (MLGs) and 1 assemblage A MLG and assemblage E MLGs formed 5 subgroups. To the best of our knowledge, this is the first report on mixed infection with two or three Cryptosporidium species in cattle in Ningxia and on the presence of the C. parvum subtype IIdA20G1 in this part of China. This study also discovered nine genotypes of E. bieneusis and novel features of G. duodenalis assemblages in Ningxia. This study indicates that dairy cattle in this region may play a significant role in the zoonotic transmission of Cryptosporidium spp., E. bieneusi, and G. duodenalis.


Asunto(s)
Enfermedades de los Bovinos , Criptosporidiosis , Cryptosporidium , Enterocytozoon , Giardia lamblia , Giardiasis , Microsporidiosis , Animales , Enterocytozoon/genética , Enterocytozoon/aislamiento & purificación , Bovinos , Cryptosporidium/genética , Cryptosporidium/aislamiento & purificación , Cryptosporidium/clasificación , Giardia lamblia/genética , Giardia lamblia/aislamiento & purificación , Criptosporidiosis/epidemiología , Criptosporidiosis/parasitología , China/epidemiología , Prevalencia , Microsporidiosis/veterinaria , Microsporidiosis/epidemiología , Enfermedades de los Bovinos/epidemiología , Enfermedades de los Bovinos/parasitología , Enfermedades de los Bovinos/microbiología , Giardiasis/veterinaria , Giardiasis/epidemiología , Giardiasis/parasitología , Femenino , Heces/parasitología , Heces/microbiología
17.
Microorganisms ; 12(4)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38674755

RESUMEN

Globally, Enterocytozoon bieneusi has been detected in humans and various animal hosts. Wild rats and shrews have the potential to act as carriers of E. bieneusi, facilitating the parasite's transmission to humans and domestic animals. We aimed to investigate the prevalence of E. bieneusi in 652 wild rats and shrews from Zhejiang Province, China, by amplifying the internal transcribed spacer (ITS) region of rDNA through polymerase chain reaction (PCR). To determine animal species, we amplified the Cytochrome b (Cyt-b) gene in their fecal DNA using PCR. Furthermore, we determined the genotype of E. bieneusi by amplifying the ITS region of rDNA through PCR. Genetic traits and zoonotic potential were evaluated using similarity and phylogenetic analyses. Suncus murinus (n = 282) and five rat species, Rattus losea (n = 18), Apodemus agrarius (n = 36), Rattus tanezumi (n = 86), Rattus norvegicus (n = 155), and Niviventer niviventer (n = 75), were identified. The average infection rate of E. bieneusi was 14.1% (92/652) with 18.1% (51/282) in S. murinus and 11.1% (41/370) in rats (27.8% in R. losea, 22.2% in A. agrarius, 10.5% in R. tanezumi, 8.4% in R. norvegicus, and 8.0% in N. niviventer). Thirty-three genotypes were identified, including 16 known genotypes. The most commonly known genotypes were HNR-VI (n = 47) and Peru11 (n = 6). Type IV, KIN-1, SHW7, and HNPL-II were each found in two samples, while Macaque4, CH5, K, Henan-III, Henan-V, HNP-II, HNPL-I, HNPL-III, HNHZ-II, and HNHZ-III were each found in one sample. Additionally, 17 novel genotypes were discovered: WZR-VIII (n = 5), WZR-I to WZR-VII, WZR-IX to WZR-XII, and WZSH-I to WZSH-V (n = 1 each). Those 33 genotypes were divided into three groups: Group 1 (n = 25), Group 2 (n = 3), and Group 13 (n = 5). The initial report underscores the extensive occurrence and notable genetic diversity of E. bieneusi in wild rats and shrews from Zhejiang province, China. These results suggest that these animals play a pivotal role in the transmission of E. bieneusi. Furthermore, animals carrying the zoonotic genotypes of E. bieneusi pose a serious threat to residents.

18.
Food Waterborne Parasitol ; 35: e00225, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38523772

RESUMEN

Enterocytozoon bieneusi is one of the most prevalent microsporidia species, responsible for more than 90% of human and animal microsporidiosis. Microsporidia species, particularly E. bieneusi, are frequently reported from waterborne and foodborne outbreaks. Therefore, early detection is crucial in clinics and outbreak investigations. This study aimed to design a loop-mediated isothermal amplification (LAMP) for rapid detection of E. bieneusi. Total DNA was extracted from 30 E. bieneusi -positive samples, which had been confirmed with nested PCR. LAMP primers were designed based on the identical fragment of small subunit ribosomal RNA (SSU rRNA) gene. LAMP reactions were performed at 63 °C for 60 min. The sensitivity and specificity of the assay were analyzed and the results of amplification were compared to real-time PCR. Our results showed that the LAMP assay successfully amplified 25/30 (83.3%) samples. The specificity results indicated no false positive with other microorganisms. Furthermore, the LAMP method exhibited a sensitivity (limit of detection, LoD) as low as 34 ag/µL of total DNA. Compared to the LAMP assay, real-time PCR was able to detect all 30 nested PCR-positive samples. Our findings showed that the LAMP assay was able to detect 83.3% of E. bieneusi-positive samples. Although the current assay was not able to detect all nested PCR-positive samples, the lack of need for specific instruments, rapid processes, and high specificity makes LAMP assay a suitable tool for screening.

19.
Med Mycol ; 62(4)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38499442

RESUMEN

Microsporidia is a diverse group of obligate, intracellular, and spore-forming parasites that infect a wide range of animals. Among them, Enterocytozoon bieneusi and Encephalitozoon spp. are the most frequently reported species in humans. Limited information is available about the presence and molecular diversity of microsporidian species in the endangered Iberian lynx (Lynx pardinus). Presence of Enterocytozoon bieneusi and Encephalitozoon spp. was investigated by molecular methods in wild and captive Iberian lynxes from Spain. Overall, E. bieneusi was detected in 3.2% (8/251) of the animals examined. None of the samples tested were positive for Encephalitozoon spp. Four known (D, EbfelA, PigEBITS7, and Type IV) and a novel (named as LynxSpEb1) E. bieneusi genotypes were identified. All the genotypes found belonged to the zoonotic Group 1 of E. bieneusi. This study provides the first genotyping data of E. bieneusi in Iberian lynx in Spain. Our result indicate that the Iberian lynx does not seem to play a relevant role in the epidemiology of Encephalitozoon spp., and that this endangered felid is likely acting as spillover host rather than a true reservoir of E. bieneusi. Additional studies should be conducted to assess the impact of this parasite in the health status of the endangered Iberian lynx.


Asunto(s)
Encephalitozoon , Enterocytozoon , Lynx , Microsporidios , Humanos , Animales , Genotipo , Lynx/parasitología , Enterocytozoon/genética , Prevalencia , Heces , Filogenia
20.
Acta Trop ; 254: 107186, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38513912

RESUMEN

Bats stand as one of the most diverse groups in the animal kingdom and are key players in the global transmission of emerging pathogens. However, their role in transmitting Enterocytozoon bieneusi and Cryptosporidium spp. remains unclear. This study aimed to evaluate the occurrence and genetic diversity of the two pathogens in fruit bats (Rousettus leschenaultii) in Hainan, China. Ten fresh fecal specimens of fruit bats were collected from Wanlvyuan Gardens, Haikou, China. The fecal samples were tested for E. bieneusi and Cryptosporidium spp. using Polymerase Chain Reaction (PCR) analysis and sequencing the internal transcribed spacer (ITS) region and partial small subunit of ribosomal RNA (SSU rRNA) gene, respectively. Genetic heterogeneity across Cryptosporidium spp. isolates was assessed by sequencing 4 microsatellite/minisatellite loci (MS1, MS2, MS3, and MS16). The findings showed that out of the ten specimens analyzed, 2 (20 %) and seven (70.0 %) were tested positive for E. bieneusi and Cryptosporidium spp., respectively. DNA sequence analysis revealed the presence of two novel Cryptosporidium genotypes with 94.4 to 98.6 % sequence similarity to C. andersoni, named as Cryptosporidium bat-genotype-XXI and bat-genotype-XXII. Three novel sequences of MS1, MS2 and MS16 loci identified here had 95.4 to 96.9 % similarity to the known sequences, which were deposited in the GenBank. Two genotypes of E. bieneusi were identified, including a novel genotype named HNB-I and a zoonotic genotype PigEbITS7. The discovery of these novel sequences provides meaningful data for epidemiological studies of the both pathogens. Meanwhile our results are also presented that the fruit bats infected with E. bieneusi, but not with Cryptosporidium, should be considered potential public health threats.


Asunto(s)
Quirópteros , Criptosporidiosis , Cryptosporidium , Enterocytozoon , Heces , Genotipo , Microsporidiosis , Animales , Quirópteros/parasitología , Quirópteros/microbiología , Enterocytozoon/genética , Enterocytozoon/aislamiento & purificación , Enterocytozoon/clasificación , Cryptosporidium/genética , Cryptosporidium/clasificación , Cryptosporidium/aislamiento & purificación , China/epidemiología , Microsporidiosis/veterinaria , Microsporidiosis/epidemiología , Microsporidiosis/parasitología , Microsporidiosis/microbiología , Criptosporidiosis/parasitología , Criptosporidiosis/epidemiología , Heces/parasitología , Heces/microbiología , Variación Genética , Filogenia , Análisis de Secuencia de ADN , ADN Espaciador Ribosómico/genética , Reacción en Cadena de la Polimerasa , ADN de Hongos/genética , Repeticiones de Microsatélite , ADN Protozoario/genética , Parques Recreativos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA