Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 17(18): 18089-18102, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37669546

RESUMEN

Efferocytosis of apoptotic cancer cells by tumor-associated macrophages or other phagocytes is reported to promote tumor immunosuppression by preventing them from secondary necrosis, which would lead to the release of intracellular components and thus enhanced immunogenicity. Therefore, current apoptosis-inducing cancer treatments (e.g., chemotherapy and radiotherapy) are less satisfactory in eliciting antitumor immunity. Herein, a nanoparticulate inhibitor of efferocytosis is prepared by encapsulating BMS777607, a hydrophobic inhibitor of receptors in macrophages responsible for phosphatidylserine-dependent efferocytosis, with biocompatible poly(lactic-co-glycolic acid) and its amphiphilic derivatives. The yielded nano-BMS can inhibit the efferocytosis of apoptotic cancer cells, thus redirecting them to immunogenic secondary necrosis. As a result, intratumorally injected nano-BMS is capable of activating both innate and adaptive antitumor immunity to achieve greatly improved therapeutic responses, when synergized with nonimmunogenic chemotherapy by cisplatin, immunogenic chemotherapy by oxaliplatin, or radiotherapy by external beams. Moreover, we further demonstrate that the inhalation of nano-BMS could significantly promote the efficacy of cisplatin chemotherapy to suppress tumor lung metastases. Therefore, this study highlights a general strategy to potentiate the immunogenicity of different cancer treatments by suppressing efferocytosis-propelled tumor immunosuppression, showing tremendous clinical potential in rescuing existing cancer therapies for more effective treatment.


Asunto(s)
Cisplatino , Neoplasias , Humanos , Fagocitosis , Necrosis , Apoptosis , Macrófagos , Neoplasias/tratamiento farmacológico
2.
Biomaterials ; 299: 122181, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37276797

RESUMEN

Abnormal tumor vasculature is reported to severely hinder the therapeutic potency of diverse cancer therapeutics by restricting their intratumoral accumulation and/or causing therapeutic resistance. Herein, a microbubble-assisted ultrasonication technology (MAUT) of systemic administration of octafluoropropane-filled microbubbles together with tumor localized ultrasound (US) exposure is developed to generally promote intratumoral accumulation efficacy of three kinds of anti-tumor drugs with varying sizes through the cavitation effect-induced disruption of tumor blood vessels. MAUT was further shown to enable selective tumor hypoxia attenuation by filling microbubbles with high-purity oxygen and thus reducing the production of immunosuppressive lactic acids by suppressing glycolysis in cancer cells. Resultantly, MAUT markedly enhanced the therapeutic outcome of systemically administered anti-programmed death-1 (anti-PD-1) and chemotherapeutic doxorubicin (DOX) with and without using nanoscale liposomes as delivery vehicles. This work highlights that MAUT is a biocompatible yet versatile strategy to effectively reinforce the therapeutic potency of a broad range of cancer therapeutics, promising for future clinical usage.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Microburbujas , Microambiente Tumoral , Neoplasias/tratamiento farmacológico , Doxorrubicina , Antineoplásicos/uso terapéutico , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA