Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 20690, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237632

RESUMEN

The sand cat swarm optimization (SCSO) is a recently proposed meta-heuristic algorithm. It inspires hunting behavior with sand cats based on hearing ability. However, in the later stage of SCSO, it is easy to fall into local optimality and cannot find a better position. In order to improve the search ability of SCSO and avoid falling into local optimal, an improved algorithm is proposed - Improved sand cat swarm optimization based on lens opposition-based learning and sparrow search algorithm (LSSCSO). A dynamic spiral search is introduced in the exploitation stage to make the algorithm search for better positions in the search space and improve the convergence accuracy of the algorithm. The lens opposition-based learning and the sparrow search algorithm are introduced in the later stages of the algorithm to make the algorithm jump out of the local optimum and improve the global search capability of the algorithm. To verify the effectiveness of LSSCSO in solving global optimization problems, CEC2005 and CEC2022 test functions are used to test the optimization performance of LSSCSO in different dimensions. The data results, convergence curve and Wilcoxon rank sum test are analyzed, and the results show that it has a strong optimization ability and can reach the optimal in most cases. Finally, LSSCSO is used to verify the effectiveness of the algorithm in solving engineering optimization problems.

2.
Biomimetics (Basel) ; 8(5)2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37754192

RESUMEN

The Hunger Games Search (HGS) is an innovative optimizer that operates without relying on gradients and utilizes a population-based approach. It draws inspiration from the collaborative foraging activities observed in social animals in their natural habitats. However, despite its notable strengths, HGS is subject to limitations, including inadequate diversity, premature convergence, and susceptibility to local optima. To overcome these challenges, this study introduces two adjusted strategies to enhance the original HGS algorithm. The first adaptive strategy combines the Logarithmic Spiral (LS) technique with Opposition-based Learning (OBL), resulting in the LS-OBL approach. This strategy plays a pivotal role in reducing the search space and maintaining population diversity within HGS, effectively augmenting the algorithm's exploration capabilities. The second adaptive strategy, the dynamic Rosenbrock Method (RM), contributes to HGS by adjusting the search direction and step size. This adjustment enables HGS to escape from suboptimal solutions and enhances its convergence accuracy. Combined, these two strategies form the improved algorithm proposed in this study, referred to as RLHGS. To assess the efficacy of the introduced strategies, specific experiments are designed to evaluate the impact of LS-OBL and RM on enhancing HGS performance. The experimental results unequivocally demonstrate that integrating these two strategies significantly enhances the capabilities of HGS. Furthermore, RLHGS is compared against eight state-of-the-art algorithms using 23 well-established benchmark functions and the CEC2020 test suite. The experimental results consistently indicate that RLHGS outperforms the other algorithms, securing the top rank in both test suites. This compelling evidence substantiates the superior functionality and performance of RLHGS compared to its counterparts. Moreover, RLHGS is applied to address four constrained real-world engineering optimization problems. The final results underscore the effectiveness of RLHGS in tackling such problems, further supporting its value as an efficient optimization method.

3.
Biomimetics (Basel) ; 8(2)2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37218777

RESUMEN

Sand cat swarm optimization algorithm (SCSO) keeps a potent and straightforward meta-heuristic algorithm derived from the distant sense of hearing of sand cats, which shows excellent performance in some large-scale optimization problems. However, the SCSO still has several disadvantages, including sluggish convergence, lower convergence precision, and the tendency to be trapped in the topical optimum. To escape these demerits, an adaptive sand cat swarm optimization algorithm based on Cauchy mutation and optimal neighborhood disturbance strategy (COSCSO) are provided in this study. First and foremost, the introduction of a nonlinear adaptive parameter in favor of scaling up the global search helps to retrieve the global optimum from a colossal search space, preventing it from being caught in a topical optimum. Secondly, the Cauchy mutation operator perturbs the search step, accelerating the convergence speed and improving the search efficiency. Finally, the optimal neighborhood disturbance strategy diversifies the population, broadens the search space, and enhances exploitation. To reveal the performance of COSCSO, it was compared with alternative algorithms in the CEC2017 and CEC2020 competition suites. Furthermore, COSCSO is further deployed to solve six engineering optimization problems. The experimental results reveal that the COSCSO is strongly competitive and capable of being deployed to solve some practical problems.

4.
Eng Comput ; 39(3): 1735-1769, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35035007

RESUMEN

There is a new nature-inspired algorithm called salp swarm algorithm (SSA), due to its simple framework, it has been widely used in many fields. But when handling some complicated optimization problems, especially the multimodal and high-dimensional optimization problems, SSA will probably have difficulties in convergence performance or dropping into the local optimum. To mitigate these problems, this paper presents a chaotic SSA with differential evolution (CDESSA). In the proposed framework, chaotic initialization and differential evolution are introduced to enrich the convergence speed and accuracy of SSA. Chaotic initialization is utilized to produce a better initial population aim at locating a better global optimal. At the same time, differential evolution is used to build up the search capability of each agent and improve the sense of balance of global search and intensification of SSA. These mechanisms collaborate to boost SSA in accelerating convergence activity. Finally, a series of experiments are carried out to test the performance of CDESSA. Firstly, IEEE CEC2014 competition fuctions are adopted to evaluate the ability of CDESSA in working out the real-parameter optimization problems. The proposed CDESSA is adopted to deal with feature selection (FS) problems, then five constrained engineering optimization problems are also adopted to evaluate the property of CDESSA in dealing with real engineering scenarios. Experimental results reveal that the proposed CDESSA method performs significantly better than the original SSA and other compared methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA