Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 739: 139989, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32535467

RESUMEN

The sulfidized form represents an environmentally relevant transformation state of silver nanoparticles (Ag-NPs) released into natural systems via wastewater route. However, the detailed characterization of sulfidized silver nanoparticles (S-Ag-NPs) is missing and their colloidal stability in aquatic systems is only insufficiently studied. The aim of this study was to systematically evaluate the surface properties, morphology, structure, composition, as well as aggregation dynamics of S-Ag-NPs in synthetic and natural river water. The S-Ag-NPs were prepared by sulfidation of citrate-coated silver nanoparticles (Cit-Ag-NPs). The sulfidation of Ag-NPs was accompanied by the formation of fiber-like Ag2S nano-bridges, Ag0-Ag2S core-shell structures, and hollow regions. In contrast to the published literature, the nano-bridges were thinner (2-9 nm) and longer (up to 60 nm), they formed at higher S2-/Ag molar ratio (2.041), and the formation of the core-shell structures was observed even in the absence of natural organic matter (NOM). Furthermore, we observed selective sulfidation of nanoparticles which can induce the hot spots for the release of toxic Ag+ ions. The critical coagulation concentration (CCC) of Ca2+ determined for S-Ag-NPs in reconstituted river water was 2.47 ± 0.23 mmol/L and thus higher than the CCC obtained for Cit-Ag-NPs in our earlier study revealing higher colloidal stability of S-Ag-NPs. In natural river water, S-Ag-NPs were also colloidally more stable compared to the Cit-Ag-NPs. Furthermore, the stabilizing effect of NOM was much higher for S-Ag-NPs than for Cit-Ag-NPs. For S-Ag-NPs stabilized by a low amount of citrate, we expect longer residence times in the water phase of rivers and thus higher risk for aquatic organisms. In contrast to this, the pristine Cit-Ag-NPs are expected to be accumulated faster in the sediments representing higher risk for benthic organisms. This study contributes to better understanding of environmental fate and effects of Ag-NPs released via wastewater route.

2.
Environ Pollut ; 255(Pt 1): 113124, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31622956

RESUMEN

The transport and retention behavior of polymer- (PVP-AgNP) and surfactant-stabilized (AgPURE) silver nanoparticles in carbonate-dominated saturated and unconsolidated porous media was studied at the laboratory scale. Initial column experiments were conducted to investigate the influence of chemical heterogeneity (CH) and nano-scale surface roughness (NR) arising from mixtures of clean, positively charged calcium carbonate sand (CCS), and negatively charged quartz sands. Additional column experiments were performed to elucidate the impact of CH and NR arising from the presence and absence of soil organic matter (SOM) on a natural carbonate-dominated aquifer material. The role of the nanoparticle capping agent was examined under all conditions tested in the column experiments. Nanoparticle transport was well described using a numerical model that facilitated blocking on one or two retention sites. Results demonstrate that an increase in CCS content in the artificially mixed porous medium leads to delayed breakthrough of the AgNPs, although AgPURE was much less affected by the CCS content than PVP-AgNPs. Interestingly, only a small portion of the solid surface area contributed to AgNP retention, even on positively charged CCS, due to the presence of NR which weakened the adhesive interaction. The presence of SOM enhanced the retention of AgPURE on the natural carbonate-dominated aquifer material, which can be a result of hydrophobic or hydrophilic interactions or due to cation bridging. Surprisingly, SOM had no significant impact on PVP-AgNP retention, which suggests that a reduction in electrostatic repulsion due to the presence of SOM outweighs the relative importance of other binding mechanisms. Our findings are important for future studies related to AgNP transport in shallow unconsolidated calcareous and siliceous sands.


Asunto(s)
Carbonato de Calcio/análisis , Nanopartículas del Metal/análisis , Compuestos Orgánicos/química , Plata/análisis , Suelo/química , Agua Subterránea/química , Interacciones Hidrofóbicas e Hidrofílicas , Polímeros/química , Porosidad , Cuarzo/química , Suelo/clasificación , Tensoactivos
3.
Environ Pollut ; 236: 195-207, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29414340

RESUMEN

Packed column experiments were conducted to investigate the transport and blocking behavior of surfactant- and polymer-stabilized engineered silver nanoparticles (Ag-ENPs) in saturated natural aquifer media with varying content of material < 0.063 mm in diameter (silt and clay fraction), background solution chemistry, and flow velocity. Breakthrough curves for Ag-ENPs exhibited blocking behavior that frequently produced a delay in arrival time in comparison to a conservative tracer that was dependent on the physicochemical conditions, and then a rapid increase in the effluent concentration of Ag-ENPs. This breakthrough behavior was accurately described using one or two irreversible retention sites that accounted for Langmuirian blocking on one site. Simulated values for the total retention rate coefficient and the maximum solid phase concentration of Ag-ENPs increased with increasing solution ionic strength, cation valence, clay and silt content, decreasing flow velocity, and for polymer-instead of surfactant-stabilized Ag-ENPs. Increased Ag-ENP retention with ionic strength occurred because of compression of the double layer and lower magnitudes in the zeta potential, whereas lower velocities increased the residence time and decreased the hydrodynamics forces. Enhanced Ag-ENP interactions with cation valence and clay were attributed to the creation of cation bridging in the presence of Ca2+. The delay in breakthrough was always more pronounced for polymer-than surfactant-stabilized Ag-ENPs, because of differences in the properties of the stabilizing agents and the magnitude of their zeta-potential was lower. Our results clearly indicate that the long-term transport behavior of Ag-ENPs in natural, silicate dominated aquifer material will be strongly dependent on blocking behavior that changes with the physicochemical conditions and enhanced Ag-ENP transport may occur when retention sites are filled.


Asunto(s)
Agua Subterránea/química , Nanopartículas del Metal/análisis , Polímeros/química , Silicatos/química , Plata/análisis , Tensoactivos/química , Silicatos de Aluminio/química , Arcilla , Nanopartículas del Metal/química , Modelos Teóricos , Concentración Osmolar , Plata/química
4.
Chemosphere ; 135: 304-11, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25966049

RESUMEN

To assess if the geochemical reactivity and human bioaccessibility of silver nanoparticles (AgNPs) in soils can be determined by routine soil tests commonly applied to other metals in soil, colloidal Ag was introduced to five pots containing urban soils (equivalent to 6.8 mg Ag kg(-1) soil). Following a 45 days stabilization period, the geochemical reactivity was determined by extraction using 0.43 M and 2 M HNO3. The bioaccessibility of AgNPs was evaluated using the Simplified Bioaccessibility Extraction Test (SBET) the "Unified BARGE Method" (UBM), and two simulated lung fluids (modified Gamble's solution (MGS) and artificial lysosomal fluid (ALF)). The amount of Ag extracted by 0.43 M and 2 M HNO3 soil tests was <8% and <50%, respectively of the total amount of Ag added to soils suggesting that the reactivity of Ag present in the soil can be relatively low. The bioaccessibility of Ag as determined by the four in vitro tests ranged from 17% (ALF extraction) to 99% (SBET) indicating that almost all Ag can be released from soil due to specific interactions with the organic ligands present in the simulated body fluids. This study shows that to develop sound soil risk evaluations regarding soil contamination with AgNPs, aspects of Ag biochemistry need to be considered, particularly when linking commonly applied soil tests to human risk assessment.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Nanopartículas/metabolismo , Plata/metabolismo , Contaminantes del Suelo/metabolismo , Suelo/química , Contaminación Ambiental/análisis , Humanos , Nanopartículas/análisis , Medición de Riesgo , Plata/análisis , Contaminantes del Suelo/análisis
5.
J Contam Hydrol ; 158: 1-13, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24389393

RESUMEN

Engineered nanoparticles are increasingly applied in consumer products and concerns are rising regarding their risk as potential contaminants or carriers for colloid-facilitated contaminant transport. Engineered silver nanoparticles (AgNP) are among the most widely used nanomaterials in consumer products. However, their mobility in groundwater has been scarcely investigated. In this study, transport of stabilized AgNP through porous sandstones with variations in mineralogy, pore size distribution and permeability is investigated in laboratory experiments with well-defined boundary conditions. The AgNP samples were mainly characterized by asymmetric flow field-flow fractionation coupled to a multi-angle static laser light detector and ultraviolet-visible spectroscopy for determination of particle size and concentration. The rock samples are characterized by mercury porosimetry, flow experiments and solute tracer tests. Solute and AgNP breakthrough was quantified by applying numerical models considering one kinetic site model for particle transport. The transport of AgNP strongly depends on pore size distribution, mineralogy and the solution ionic strength. Blocking of attachment sites results in less reactive transport with increasing application of AgNP mass. AgNPs were retained due to physicochemical filtration and probably due to straining. The results demonstrate the restricted applicability of AgNP transport parameters determined from simplified experimental model systems to realistic environmental matrices.


Asunto(s)
Agua Subterránea/química , Nanopartículas del Metal/análisis , Plata , Purificación del Agua/métodos , Filtración/métodos , Nanopartículas del Metal/química , Tamaño de la Partícula , Permeabilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA