Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Physiol Behav ; 273: 114403, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37939830

RESUMEN

Resource limitation can constrain energy (ATP) production, and thereby affect locomotion and behaviour such as exploration of novel environments and boldness. Consequently, ecological processes such as dispersal and interactions within and between species may be influenced by food availability. Energy metabolism, and behaviour are regulated by endocrine signalling, and may therefore be impacted by endocrine disrupting compounds (EDCs) including bisphenol A (BPA) derived from plastic manufacture and pollution. It is important to determine the impacts of these novel environmental contexts to understand how human activity alters individual physiology and behaviour and thereby populations. Our aim was to determine whether BPA exposure interacts with feeding frequency to alter metabolism and behaviour. In a fully factorial experiment, we show that low feeding frequency reduced zebrafish (Danio rerio) mass, condition, resting metabolic rates, total distance moved and speed in a novel arena, as well as anxiety indicated by the number of times fish returned to a dark shelter. However, feeding frequency did not significantly affect maximal metabolic rates, aerobic scope, swimming performance, latency to leave a shelter, or metabolic enzyme activities (citrate synthase and lactate dehydrogenase). Natural or anthropogenic fluctuation in food resources can therefore impact energetics and movement of animals with repercussions for ecological processes such as dispersal. BPA exposure reduced LDH activity and body mass, but did not interact with feeding frequency. Hence, behaviour of adult fish is relatively insensitive to disruption by BPA. However, alteration of LDH activity by BPA could disrupt lactate metabolism and signalling and together with reduction in body mass could affect size-dependent reproductive output. BPA released by plastic manufacture and pollution can thereby impact conservation and management of natural resources.


Asunto(s)
Perciformes , Pez Cebra , Humanos , Animales , Compuestos de Bencidrilo/toxicidad , Fenoles/toxicidad , Metabolismo Energético
2.
Food Chem X ; 19: 100837, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37780265

RESUMEN

Meat is often contaminated by food-borne pathogens, resulting in significant economic losses. Linalool from plant essential oils (EOs) has been reported to have excellent antibacterial properties. Therefore, this study aims to elucidate the mechanism of linalool against Shigella sonnei (S. sonnei) based on proteomic and physiological indicators. The results indicated that linalool severely perturbed the expression levels of intracellular proteins, of which 208 were up-regulated and 49 were down-regulated. Moreover, linalool exerted its inhibitory effect mainly through the induction of amino acid limitation and insufficient energy levels based on the pathways involved in differential expressed proteins (DEPs). After 8 h, alkaline phosphatase (AKP) leakage increased 20.96 and 21.52-fold in the MIC and 2MIC groups while protein leakage increased 2.17 and 2.50-fold, respectively, which revealed the potential of linalool on cell structure damage combined with nucleic acid leakage. In addition, the ATP content decreased to 36.92% and 18.84% in the MIC and 2MIC groups, respectively when processed for 8 h. In particular, linalool could effectively control the quality change of fresh beef by measuring pH, total volatile basic nitrogen (TVB-N), total viable counts (TVC) while not affecting its sensory acceptability based on the result of sensory evaluation. This research provides theoretical insights for the development of linalool as a new natural antibacterial agent.

4.
mBio ; 13(6): e0244322, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36409126

RESUMEN

Some marine thermophilic methanogens are able to perform energy-consuming nitrogen fixation despite deriving only little energy from hydrogenotrophic methanogenesis. We studied this process in Methanothermococcus thermolithotrophicus DSM 2095, a methanogenic archaeon of the order Methanococcales that contributes to the nitrogen pool in some marine environments. We successfully grew this archaeon under diazotrophic conditions in both batch and fermenter cultures, reaching the highest cell density reported so far. Diazotrophic growth depended strictly on molybdenum and, in contrast to other diazotrophs, was not inhibited by tungstate or vanadium. This suggests an elaborate control of metal uptake and a specific metal recognition system for the insertion into the nitrogenase cofactor. Differential transcriptomics of M. thermolithotrophicus grown under diazotrophic conditions with ammonium-fed cultures as controls revealed upregulation of the nitrogenase machinery, including chaperones, regulators, and molybdate importers, as well as simultaneous upregulation of an ammonium transporter and a putative pathway for nitrate and nitrite utilization. The organism thus employs multiple synergistic strategies for uptake of nitrogen nutrients during the early exponential growth phase without altering transcription levels for genes involved in methanogenesis. As a counterpart, genes coding for transcription and translation processes were downregulated, highlighting the maintenance of an intricate metabolic balance to deal with energy constraints and nutrient limitations imposed by diazotrophy. This switch in the metabolic balance included unexpected processes, such as upregulation of the CRISPR-Cas system, probably caused by drastic changes in transcription levels of putative mobile and virus-like elements. IMPORTANCE The thermophilic anaerobic archaeon M. thermolithotrophicus is a particularly suitable model organism to study the coupling of methanogenesis to diazotrophy. Likewise, its capability of simultaneously reducing N2 and CO2 into NH3 and CH4 with H2 makes it a viable target for biofuel production. We optimized M. thermolithotrophicus cultivation, resulting in considerably higher cell yields and enabling the successful establishment of N2-fixing bioreactors. Improved understanding of the N2 fixation process would provide novel insights into metabolic adaptations that allow this energy-limited extremophile to thrive under diazotrophy, for instance, by investigating its physiology and uncharacterized nitrogenase. We demonstrated that diazotrophic growth of M. thermolithotrophicus is exclusively dependent on molybdenum, and complementary transcriptomics corroborated the expression of the molybdenum nitrogenase system. Further analyses of differentially expressed genes during diazotrophy across three cultivation time points revealed insights into the response to nitrogen limitation and the coordination of core metabolic processes.


Asunto(s)
Compuestos de Amonio , Euryarchaeota , Fijación del Nitrógeno/genética , Molibdeno , Transcriptoma , Nitrogenasa/metabolismo , Euryarchaeota/genética , Nitrógeno/metabolismo , Methanococcaceae/genética , Methanococcaceae/metabolismo
5.
Front Microbiol ; 13: 859063, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35656001

RESUMEN

Microorganisms function as open systems that exchange matter and energy with their surrounding environment. Even though mass (carbon and nutrients) and energy exchanges are tightly linked, there is a lack of integrated approaches that combine these fluxes and explore how they jointly impact microbial growth. Such links are essential to predicting how the growth rate of microorganisms varies, especially when the stoichiometry of carbon- (C) and nitrogen (N)-uptake is not balanced. Here, we present a theoretical framework to quantify the microbial growth rate for conditions of C-, N-, and energy-(co-) limitations. We use this framework to show how the C:N ratio and the degree of reduction of the organic matter (OM), which is also the electron donor, availability of electron acceptors (EAs), and the different sources of N together control the microbial growth rate under C, nutrient, and energy-limited conditions. We show that the growth rate peaks at intermediate values of the degree of reduction of OM under oxic and C-limited conditions, but not under N-limited conditions. Under oxic conditions and with N-poor OM, the growth rate is higher when the inorganic N (NInorg)-source is ammonium compared to nitrate due to the additional energetic cost involved in nitrate reduction. Under anoxic conditions, when nitrate is both EA and NInorg-source, the growth rates of denitrifiers and microbes performing the dissimilatory nitrate reduction to ammonia (DNRA) are determined by both OM degree of reduction and nitrate-availability. Consistent with the data, DNRA is predicted to foster growth under extreme nitrate-limitation and with a reduced OM, whereas denitrifiers are favored as nitrate becomes more available and in the presence of oxidized OM. Furthermore, the growth rate is reduced when catabolism is coupled to low energy yielding EAs (e.g., sulfate) because of the low carbon use efficiency (CUE). However, the low CUE also decreases the nutrient demand for growth, thereby reducing N-limitation. We conclude that bioenergetics provides a useful conceptual framework for explaining growth rates under different metabolisms and multiple resource-limitations.

6.
Mol Biol Evol ; 38(10): 4532-4545, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34255090

RESUMEN

Microorganisms have the unique ability to survive extended periods of time in environments with extremely low levels of exploitable energy. To determine the extent that energy limitation affects microbial evolution, we examined the molecular evolutionary dynamics of a phylogenetically diverse set of taxa over the course of 1,000 days. We found that periodic exposure to energy limitation affected the rate of molecular evolution, the accumulation of genetic diversity, and the rate of extinction. We then determined the degree that energy limitation affected the spectrum of mutations as well as the direction of evolution at the gene level. Our results suggest that the initial depletion of energy altered the direction and rate of molecular evolution within each taxon, though after the initial depletion the rate and direction did not substantially change. However, this consistent pattern became diminished when comparisons were performed across phylogenetically distant taxa, suggesting that although the dynamics of molecular evolution under energy limitation are highly generalizable across the microbial tree of life, the targets of adaptation are specific to a given taxon.


Asunto(s)
Adaptación Fisiológica , Evolución Molecular , Mutación
7.
J R Soc Interface ; 17(171): 20200588, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33081642

RESUMEN

In order to grow, reproduce and evolve life requires a supply of energy and nutrients. Astrobiology has the challenge of studying life on Earth in environments which are poorly characterized or extreme, usually both, and predicting the habitability of extraterrestrial environments. We have developed a general astrobiological model for assessing the energetic and nutrient availability of poorly characterized environments to predict their potential biological productivity. NutMEG (nutrients, maintenance, energy and growth) can be used to estimate how much biomass an environment could host, and how that life might affect the local chemistry. It requires only an overall catabolic reaction and some knowledge of the local environment to begin making estimations, with many more customizable parameters, such as microbial adaptation. In this study, the model was configured to replicate laboratory data on the growth of methanogens. It was used to predict the effect of temperature and energy/nutrient limitation on their microbial growth rates, total biomass levels, and total biosignature production in laboratory-like conditions to explore how it could be applied to astrobiological problems. As temperature rises from 280 to 330 K, NutMEG predicts exponential drops in final biomass ([Formula: see text]) and total methane production ([Formula: see text]) despite an increase in peak growth rates ([Formula: see text]) for a typical methanogen in ideal conditions. This is caused by the increasing cost of microbial maintenance diverting energy away from growth processes. Restricting energy and nutrients exacerbates this trend. With minimal assumptions NutMEG can reliably replicate microbial growth behaviour, but better understanding of the synthesis and maintenance costs life must overcome in different extremes is required to improve its results further. NutMEG can help us assess the theoretical habitability of extraterrestrial environments and predict potential biomass and biosignature production, for example on exoplanets using minimum input parameters to guide observations.


Asunto(s)
Exobiología , Medio Ambiente Extraterrestre , Biomasa , Metabolismo Energético , Temperatura
8.
ISA Trans ; 104: 53-61, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31761316

RESUMEN

In this study, the effects caused by intermittent denial-of-service jamming attack (I-DoS-JA) on different communication channels and communication topology transformations have been deeply analyzed. According to the analyzation, each different communication topology is taken as a subsystem of switching system. Based on switching system, finite-time nonlinear system robust stability conditions are derived. Both the theoretical deduction and example simulation have corroborated that this approach has special effective in resisting the intermittent DoS attack.

9.
Front Microbiol ; 10: 1959, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31501654

RESUMEN

[This corrects the article DOI: 10.3389/fmicb.2018.01605.].

10.
Appl Environ Microbiol ; 85(20)2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31375494

RESUMEN

So far, the physiology of Saccharomyces cerevisiae at near-zero growth rates has been studied in retentostat cultures with a growth-limiting supply of the carbon and energy source. Despite its relevance in nature and industry, the near-zero growth physiology of S. cerevisiae under conditions where growth is limited by the supply of non-energy substrates remains largely unexplored. This study analyzes the physiology of S. cerevisiae in aerobic chemostat and retentostat cultures grown under either ammonium or phosphate limitation. To compensate for loss of extracellular nitrogen- or phosphorus-containing compounds, establishing near-zero growth rates (µ < 0.002 h-1) in these retentostats required addition of low concentrations of ammonium or phosphate to reservoir media. In chemostats as well as in retentostats, strongly reduced cellular contents of the growth-limiting element (nitrogen or phosphorus) and high accumulation levels of storage carbohydrates were observed. Even at near-zero growth rates, culture viability in non-energy-limited retentostats remained above 80% and ATP synthesis was still sufficient to maintain an adequate energy status and keep cells in a metabolically active state. Compared to similar glucose-limited retentostat cultures, the nitrogen- and phosphate-limited cultures showed aerobic fermentation and a partial uncoupling of catabolism and anabolism. The possibility to achieve stable, near-zero growth cultures of S. cerevisiae under nitrogen or phosphorus limitation offers interesting prospects for high-yield production of bio-based chemicals.IMPORTANCE The yeast Saccharomyces cerevisiae is a commonly used microbial host for production of various biochemical compounds. From a physiological perspective, biosynthesis of these compounds competes with biomass formation in terms of carbon and/or energy equivalents. Fermentation processes functioning at extremely low or near-zero growth rates would prevent loss of feedstock to biomass production. Establishing S. cerevisiae cultures in which growth is restricted by the limited supply of a non-energy substrate therefore could have a wide range of industrial applications but remains largely unexplored. In this work we accomplished near-zero growth of S. cerevisiae through limited supply of a non-energy nutrient, namely, the nitrogen or phosphorus source, and carried out a quantitative physiological study of the cells under these conditions. The possibility to achieve near-zero-growth S. cerevisiae cultures through limited supply of a non-energy nutrient may offer interesting prospects to develop novel fermentation processes for high-yield production of bio-based chemicals.


Asunto(s)
Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/fisiología , Compuestos de Amonio/metabolismo , Técnicas de Cultivo Celular por Lotes , Biomasa , Reactores Biológicos , Carbono/metabolismo , Medios de Cultivo/química , Fermentación , Glucosa/metabolismo , Redes y Vías Metabólicas , Modelos Biológicos , Nitrógeno/metabolismo , Fosfatos/metabolismo
11.
FEMS Microbiol Ecol ; 95(5)2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31055603

RESUMEN

In marine pelagic ecosystems energy is often the limiting factor for growth of heterotrophic bacteria. Aerobic anoxygenic photosynthesis (AAP) and oxidation of carbon monoxide (CO) are modes to acquire complementary energy, but their significance in abundant and characteristic pelagic marine bacteria has not been well studied. In long-term batch culture experiments we found that Planktomarina temperata RCA23, representing the largest and most prominent subcluster of the Roseobacter group, maintains 2-3-fold higher cell numbers in the stationary and declining phase when grown in a light-dark cycle relative to dark conditions. Light enables P. temperata to continue to replicate its DNA during the stationary phase relative to a dark control such that when reinoculated into fresh medium growth resumed two days earlier than in control cultures. In cultures grown in the dark and supplemented with CO, cell numbers in the stationary phase remained significantly higher than in an unsupplemented control. Furthermore, repeated spiking with CO until day 372 resulted in significant CO consumption relative to an unsupplemented control. P. temperata represents a prominent marine pelagic bacterium for which AAP and CO consumption, to acquire complementary energy, have been documented.


Asunto(s)
Monóxido de Carbono/metabolismo , Fotosíntesis , Rhodobacteraceae/metabolismo , Roseobacter/metabolismo , Aerobiosis , Ecosistema , Procesos Heterotróficos , Oxidación-Reducción
12.
Glob Chang Biol ; 25(3): 839-849, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30570815

RESUMEN

In order to understand the effect of global change on marine fishes, it is imperative to quantify the effects on fundamental parameters such as survival and growth. Larval survival and recruitment of the Atlantic cod (Gadus morhua) were found to be heavily impaired by end-of-century levels of ocean acidification. Here, we analysed larval growth among 35-36 days old surviving larvae, along with organ development and ossification of the skeleton. We combined CO2 treatments (ambient: 503 µatm, elevated: 1,179 µatm) with food availability in order to evaluate the effect of energy limitation in addition to the ocean acidification stressor. As expected, larval size (as a proxy for growth) and skeletogenesis were positively affected by high food availability. We found significant interactions between acidification and food availability. Larvae fed ad libitum showed little difference in growth and skeletogenesis due to the CO2 treatment. Larvae under energy limitation were significantly larger and had further developed skeletal structures in the elevated CO2 treatment compared to the ambient CO2 treatment. However, the elevated CO2 group revealed impairments in critically important organs, such as the liver, and had comparatively smaller functional gills indicating a mismatch between size and function. It is therefore likely that individual larvae that had survived acidification treatments will suffer from impairments later during ontogeny. Our study highlights important allocation trade-off between growth and organ development, which is critically important to interpret acidification effects on early life stages of fish.


Asunto(s)
Alimentación Animal/análisis , Gadus morhua/fisiología , Agua de Mar/química , Animales , Desarrollo Óseo/efectos de los fármacos , Dióxido de Carbono/farmacología , Gadus morhua/crecimiento & desarrollo , Branquias/crecimiento & desarrollo , Océanos y Mares
13.
Front Microbiol ; 9: 1605, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30072971

RESUMEN

Earth's subsurface is often isolated from phototrophic energy sources and characterized by chemotrophic modes of life. These environments are often oligotrophic and limited in electron donors or electron acceptors, and include continental crust, subseafloor oceanic crust, and marine sediment as well as subglacial lakes and the subsurface of polar desert soils. These low energy subsurface environments are therefore uniquely positioned for examining minimum energetic requirements and adaptations for chemotrophic life. Current targets for astrobiology investigations of extant life are planetary bodies with largely inhospitable surfaces, such as Mars, Europa, and Enceladus. Subsurface environments on Earth thus serve as analogs to explore possibilities of subsurface life on extraterrestrial bodies. The purpose of this review is to provide an overview of subsurface environments as potential analogs, and the features of microbial communities existing in these low energy environments, with particular emphasis on how they inform the study of energetic limits required for life. The thermodynamic energetic calculations presented here suggest that free energy yields of reactions and energy density of some metabolic redox reactions on Mars, Europa, Enceladus, and Titan could be comparable to analog environments in Earth's low energy subsurface habitats.

14.
mBio ; 8(6)2017 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-29184024

RESUMEN

Microbial growth arrest can be triggered by diverse factors, one of which is energy limitation due to scarcity of electron donors or acceptors. Genes that govern fitness during energy-limited growth arrest and the extent to which they overlap between different types of energy limitation are poorly defined. In this study, we exploited the fact that Pseudomonas aeruginosa can remain viable over several weeks when limited for organic carbon (pyruvate) as an electron donor or oxygen as an electron acceptor. ATP values were reduced under both types of limitation, yet more severely in the absence of oxygen. Using transposon-insertion sequencing (Tn-seq), we identified fitness determinants in these two energy-limited states. Multiple genes encoding general functions like transcriptional regulation and energy generation were required for fitness during carbon or oxygen limitation, yet many specific genes, and thus specific activities, differed in their relevance between these states. For instance, the global regulator RpoS was required during both types of energy limitation, while other global regulators such as DksA and LasR were required only during carbon or oxygen limitation, respectively. Similarly, certain ribosomal and tRNA modifications were specifically required during oxygen limitation. We validated fitness defects during energy limitation using independently generated mutants of genes detected in our screen. Mutants in distinct functional categories exhibited different fitness dynamics: regulatory genes generally manifested a phenotype early, whereas genes involved in cell wall metabolism were required later. Together, these results provide a new window into how P. aeruginosa survives growth arrest.IMPORTANCE Growth-arrested bacteria are ubiquitous in nature and disease yet understudied at the molecular level. For example, growth-arrested cells constitute a major subpopulation of mature biofilms, serving as an antibiotic-tolerant reservoir in chronic infections. Identification of the genes required for survival of growth arrest (encompassing entry, maintenance, and exit) is an important first step toward understanding the physiology of bacteria in this state. Using Tn-seq, we identified and validated genes required for fitness of Pseudomonas aeruginosa when energy limited for organic carbon or oxygen, which represent two common causes of growth arrest for P. aeruginosa in diverse habitats. This unbiased, genome-wide survey is the first to reveal essential activities for a pathogen experiencing different types of energy limitation, finding both shared and divergent activities that are relevant at different survival stages. Future efforts can now be directed toward understanding how the biomolecules responsible for these activities contribute to fitness under these conditions.


Asunto(s)
Metabolismo Energético , Aptitud Genética , Pseudomonas aeruginosa/crecimiento & desarrollo , Pseudomonas aeruginosa/genética , Adenosina Trifosfato/metabolismo , Elementos Transponibles de ADN , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Genes Reguladores , Mutagénesis Insercional , Oxígeno/metabolismo , Ácido Pirúvico/metabolismo , Análisis de Secuencia de ADN
15.
Front Microbiol ; 7: 2040, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28119666

RESUMEN

Microbial dormancy leads to the emergence of seed banks in environmental, engineered, and host-associated ecosystems. These seed banks act as reservoirs of diversity that allow microbes to persist under adverse conditions, including extreme limitation of resources. While microbial seed banks may be influenced by macroscale factors, such as the supply of resources, the importance of microscale encounters between organisms and resource particles is often overlooked. We hypothesized that dimensions of spatial, trophic, and resource complexity determine rates of encounter, which in turn, drive the abundance, productivity, and size of seed banks. We tested this using >10,000 stochastic individual based models (IBMs) that simulated energetic, physiological, and ecological processes across combinations of resource, spatial, and trophic complexity. These IBMs allowed realistic dynamics and the emergence of seed banks from ecological selection on random variation in species traits. Macroscale factors like the supply and concentration of resources had little effect on resource encounter rates. In contrast, encounter rates were strongly influenced by interactions between dispersal mode and spatial structure, and also by the recalcitrance of resources. In turn, encounter rates drove abundance, productivity, and seed bank dynamics. Time series revealed that energetically costly traits can lead to large seed banks and that recalcitrant resources can lead to greater stability through the formation of seed banks and the slow consumption of resources. Our findings suggest that microbial seed banks emerge from microscale dimensions of ecological complexity and their influence on resource limitation and energetic costs.

16.
FEMS Microbiol Rev ; 39(5): 688-728, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25994609

RESUMEN

The ability of microorganisms to withstand long periods with extremely low energy input has gained increasing scientific attention in recent years. Starvation experiments in the laboratory have shown that a phylogenetically wide range of microorganisms evolve fitness-enhancing genetic traits within weeks of incubation under low-energy stress. Studies on natural environments that are cut off from new energy supplies over geologic time scales, such as deeply buried sediments, suggest that similar adaptations might mediate survival under energy limitation in the environment. Yet, the extent to which laboratory-based evidence of starvation survival in pure or mixed cultures can be extrapolated to sustained microbial ecosystems in nature remains unclear. In this review, we discuss past investigations on microbial energy requirements and adaptations to energy limitation, identify gaps in our current knowledge, and outline possible future foci of research on life under extreme energy limitation.


Asunto(s)
Adaptación Fisiológica , Fenómenos Fisiológicos Bacterianos , Ecosistema , Metabolismo Energético , Investigación/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA