Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 899: 165647, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37474071

RESUMEN

In September 2021 an eruption began of Cumbre Vieja, La Palma (Spain) that lasted 3 months. Previous studies have shown that volcanic ash particles can be associated with adverse effects on human health however, the reasons for this are unclear. Particle shape has been shown to contribute to cellular uptake in prostate cancer cells. Hence we aimed to study 3D structure, elemental composition and effects on cultured lung cells of particles collected from the La Palma volcanic eruption. 3D imaging of PM10 sized and below particles was performed using a LEXT OLS4100 confocal microscope (Olympus Corporation, Japan). A Zeiss EVO 50 (Carl Zeiss AG, Germany) Scanning Electron Microscope (SEM) was used to assess elemental composition. In addition, volcanic particle concentration dose response for pneumococcal adhesion to A549 human alveolar epithelial cells was investigated. Confocal microscopy showed that some PM10 and below sized particles had sharp or angular 3D appearance. SEM x-ray analysis indicated silicate particles with calcium, aluminium and iron. We observed increased colony forming units indicating increased Pneumococcal adhesion due to exposure of cells to volcanic particles. Thus in addition to the toxic nature of some volcanic particles, we suggest that the observed sharp surface particle features may help to explain adverse health effects associated with volcanic eruptions.


Asunto(s)
Imagenología Tridimensional , Erupciones Volcánicas , Humanos , Erupciones Volcánicas/análisis , España , Pulmón , Microscopía Confocal
2.
Materials (Basel) ; 16(12)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37374462

RESUMEN

Perovskite solar cells represent the most attractive emerging photovoltaic technology, but their practical implementation is limited by solar cell devices' low levels of operational stability. The electric field represents one of the key stress factors leading to the fast degradation of perovskite solar cells. To mitigate this issue, one must gain a deep mechanistic understanding of the perovskite aging pathways associated with the action of the electric field. Since degradation processes are spatially heterogeneous, the behaviors of perovskite films under an applied electric field should be visualized with nanoscale resolution. Herein, we report a direct nanoscale visualization of methylammonium (MA+) cation dynamics in methylammonium lead iodide (MAPbI3) films during field-induced degradation, using infrared scattering-type scanning near-field microscopy (IR s-SNOM). The obtained data reveal that the major aging pathways are related to the anodic oxidation of I- and the cathodic reduction of MA+, which finally result in the depletion of organic species in the channel of the device and the formation of Pb. This conclusion was supported by a set of complementary techniques such as time-of-flight secondary ion mass spectrometry (ToF-SIMS), photoluminescence (PL) microscopy, scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) microanalysis. The obtained results demonstrate that IR s-SNOM represents a powerful technique for studying the spatially resolved field-induced degradation dynamics of hybrid perovskite absorbers and the identification of more promising materials resistant to the electric field.

3.
Eur J Histochem ; 62(1): 2841, 2018 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-29569878

RESUMEN

The Energy Dispersive X-ray (EDX) microanalysis is a technique of elemental analysis associated to electron microscopy based on the generation of characteristic Xrays that reveals the presence of elements present in the specimens. The EDX microanalysis is used in different biomedical fields by many researchers and clinicians. Nevertheless, most of the scientific community is not fully aware of its possible applications. The spectrum of EDX microanalysis contains both semi-qualitative and semi-quantitative information. EDX technique is made useful in the study of drugs, such as in the study of drugs delivery in which the EDX is an important tool to detect nanoparticles (generally, used to improve the therapeutic performance of some chemotherapeutic agents). EDX is also used in the study of environmental pollution and in the characterization of mineral bioaccumulated in the tissues. In conclusion, the EDX can be considered as a useful tool in all works that require element determination, endogenous or exogenous, in the tissue, cell or any other sample.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/química , Microanálisis por Sonda Electrónica/métodos , Metales Pesados/análisis , Investigación Biomédica , Contaminantes Ambientales/química , Humanos , Metales Pesados/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA