Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 354
Filtrar
1.
Chem Biol Interact ; 403: 111230, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39244186

RESUMEN

Vascular endothelial injury is closely related to the progression of various cardio-cerebrovascular diseases. Whether Human Urinary Kallidinogenase (HUK) has a protective effect on endothelial injury remains unclear. This study established an in vivo model of rat common carotid artery intima injury and an in vitro model of human umbilical vein endothelial cell (HUVECs) injury induced by hydrogen peroxide (H2O2). To explore the protective effect and mechanism of HUK on endothelial injury. In vivo, HUK can reduce the hyperplasia and lumen stenosis of rat common carotid artery after intimal injury, and promote the fluorescence expression of vWF in the common carotid artery. HUK also activated the Nrf2/HO-1 signaling pathway in rat common carotid artery tissue to reduce endothelial damage. In vitro, HUK can inhibit the H2O2-induced decline in HUVECs activity, improve the migration ability of HUVECs induced by H2O2, inhibit the apoptosis and necrosis of HUVECs and the generation of ROS, and regulate the expression of VEGFA, ET-1 and eNOS proteins related to endothelial function in cells. The Nrf2/HO-1 signaling pathway is activated, and the HO-1 specific inhibitor zinc porphyrin (ZnPP) can partially reverse the protective effect of HUK on H2O2-induced HUVECs injury in terms of cell migration, necrosis and oxidative stress. The Nrf2/HO-1 signaling pathway plays an important role in the regulation of migration, necrosis and oxidative stress of HUVECs cells. HUK has a protective effect on vascular endothelial injury. HUK can inhibit oxidative stress and apoptotic necrosis by activating Nrf2/HO-1 signaling pathway.

2.
Virchows Arch ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271482

RESUMEN

Podocyte detachment is a major trigger in pathogenesis of focal segmental glomerulosclerosis (FSGS). Detachment via ß1 integrin (ITGB1) endocytosis, associated with endothelial cell injury, has been reported in animal models but remains unknown in human kidneys. The objectives of our study were to examine the difference in ITGB1 dynamics between primary FSGS and minimal change nephrotic syndrome (MCNS), among variants of FSGS, as well as between the presence or absence of cellular lesions (CEL-L) in human kidneys, and to elucidate the pathogenesis of FSGS. Thirty-one patients with primary FSGS and 14 with MCNS were recruited. FSGS cases were categorized into two groups: those with CEL-L, defined by segmental endocapillary hypercellularity occluding lumina, and those without CEL-L. The podocyte cytoplasmic ITGB1 levels, ITGB1 expression, and degrees of podocyte detachment and subendothelial widening were compared between FSGS and MCNS, FSGS variants, and FSGS groups with and without CEL-L (CEL-L( +)/CEL-L( -)). ITGB1 distribution in podocyte cytoplasm was significantly greater in CEL-L( +) group than that in MCNS and CEL-L( -) groups. ITGB1 expression was similar in CEL-L( +) and MCNS, but lower in CEL-L( -) compared with others. Podocyte detachment levels were comparable in CEL-L( +) and CEL-L( -) groups, both exhibiting significantly higher detachment than the MCNS group. Subendothelial widening was significantly greater in CEL-L( +) compared with CEL-L( -) and MCNS groups. The findings of this study imply the existence of distinct pathological mechanisms associated with ITGB1 dynamics between CEL-L( +) and CEL-L( -) groups, and suggest a potential role of endothelial cell injury in the pathogenesis of cellular lesions in FSGS.

3.
BMC Cardiovasc Disord ; 24(1): 414, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39123133

RESUMEN

BACKGROUND: The development of acute kidney injury (AKI) post-cardiac surgery significantly increases patient morbidity and healthcare costs. Prior researches have established Syndecan-1 (SDC-1) as a potential biomarker for endothelial injury and subsequent acute kidney injury development. This study assessed whether postoperative SDC-1 levels could further predict AKI requiring kidney replacement therapy (AKI-KRT) and AKI progression. METHODS: In this prospective study, 122 adult cardiac surgery patients, who underwent valve or coronary artery bypass grafting (CABG) or a combination thereof and developed AKI within 48 h post-operation from May to September 2021, were monitored for the progression to stage 2-3 AKI or the need for KRT. We analyzed the predictive value of postoperative serum SDC-1 levels in relation to multiple endpoints. RESULTS: In the study population, 110 patients (90.2%) underwent cardiopulmonary bypass, of which thirty received CABG or combined surgery. Fifteen patients (12.3%) required KRT, and thirty-eight (31.1%) developed progressive AKI, underscoring the severe AKI incidence. Multivariate logistic regression indicated that elevated SDC-1 levels were independent risk factors for progressive AKI (OR = 1.006) and AKI-KRT (OR = 1.011). The AUROC for SDC-1 levels in predicting AKI-KRT and AKI progression was 0.892 and 0.73, respectively, outperforming the inflammatory cytokines. Linear regression revealed a positive correlation between SDC-1 levels and both hospital (ß = 0.014, p = 0.022) and ICU stays (ß = 0.013, p < 0.001). CONCLUSION: Elevated postoperative SDC-1 levels significantly predict AKI progression and AKI-KRT in patients following cardiac surgery. The study's findings support incorporating SDC-1 level monitoring into post-surgical care to improve early detection and intervention for severe AKI.


Asunto(s)
Lesión Renal Aguda , Biomarcadores , Sindecano-1 , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Lesión Renal Aguda/sangre , Lesión Renal Aguda/diagnóstico , Lesión Renal Aguda/etiología , Biomarcadores/sangre , Procedimientos Quirúrgicos Cardíacos/efectos adversos , Progresión de la Enfermedad , Valor Predictivo de las Pruebas , Estudios Prospectivos , Terapia de Reemplazo Renal , Medición de Riesgo , Factores de Riesgo , Sindecano-1/sangre , Factores de Tiempo , Resultado del Tratamiento , Regulación hacia Arriba
4.
Front Microbiol ; 15: 1423428, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39104587

RESUMEN

Objective: Tangbi capsule (TBC) is a traditional Chinese medicine prescription, which has the potential to improve the vascular insufficiency of lower extremities and limb numbness in diabetes. However, the potential mechanism remains unknown. This study aims to investigate the pharmacological effects and mechanism of TBC on rats with diabetic lower extremities arterial disease (LEAD). Methods: The mechanism of TBC on diabetic LEAD was investigated through metabolomics and transcriptomics analysis, and the main components of TBC were determined by mass spectrometry. The efficacy and mechanism of TBC on diabetic LEAD rats were investigated through in vitro experiments, histopathology, blood flow monitoring, western blot, and real-time polymerase chain reaction. Results: Mass spectrometry analysis identified 31 active chemical components in TBC including (2R)-2,3-Dihydroxypropanoic acid, catechin, citric acid, miquelianin, carminic acid, salicylic acid, formononetin, etc. In vitro analysis showed that TBC could reduce endothelial cell apoptosis and promote angiogenesis. Histopathological analysis showed that TBC led to an obvious improvement in diabetic LEAD as it improved fibrous tissue proliferation and reduced arterial wall thickening. In addition, TBC could significantly increase the expression levels of HIF-1α, eNOS, and VEGFA proteins and genes while reducing that of calpain-1 and TGF-ß, suggesting that TBC can repair vascular injury. Compared with the model group, there were 47 differentially expressed genes in the whole blood of TBC groups, with 25 genes upregulated and 22 downregulated. Eighty-seven altered metabolites were identified from the serum samples. Combining the changes in differentially expressed genes and metabolites, we found that TBC could regulate arginine biosynthesis, phenylalanine metabolism, pyrimidine metabolism, arachidonic acid metabolism, pyrimidine metabolism, arachidonic acid metabolism, nucleotide metabolism, vitamin B6 metabolism and other metabolic pathways related to angiogenesis, immune-inflammatory response, and cell growth to improve diabetic LEAD. Conclusion: TBC improved vascular endothelial injury, apoptosis, lipid accumulation, liver and kidney function, and restored blood flow in the lower extremities of diabetic LEAD rats. The mechanism of TBC in the treatment of diabetic LEAD may be related to the modulation of inflammatory immunity, lipid metabolism, and amino acid metabolism. This study presented preliminary evidence to guide the use of TBC as a therapy option for diabetic LEAD.

5.
Int J Angiol ; 33(3): 135-138, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39131804

RESUMEN

Postoperative intimal hyperplasia is the major cause of the vein graft occlusion. It is very important to establish an animal model for the start of research. After my vascular surgery residency in Japan, I started my research work on postoperative intimal hyperplasia at the University of Wisconsin-Madison. My research showed that endothelial injury and monocyte infiltration is the key for postoperative intimal hyperplasia, which is very similar to Ross' pathogenesis of atherosclerosis as an inflammatory disease. Focusing on postoperative intimal hyperplasia as an inflammatory disease, especially on tumor necrosis factor-α, FR-167653 (tumor necrosis factor-α suppressive agent, inhibitor of p 38 mitogen-activated protein kinase; Fujisawa Pharmaceutical Co., Ltd., Japan) is found to suppress postoperative intimal hyperplasia in a rat model by reducing serum monocyte chemoattractant protein-1 levels. However, FR-167653 is not commercially available today. Because endothelial injury is the first step of postoperative intimal hyperplasia, I investigated whether the free radical scavenger, edaravone (Radicut, Mitsubishi Tanabe Pharma Co., Japan), which alleviates the endothelial injury in vitro , can also suppress postoperative intimal hyperplasia. Moreover, the free radical scavenger edaravone (Radicut®, Mitsubishi Tanabe Pharma Co.) is also found to suppress postoperative intimal hyperplasia, by alleviating endothelial injury. In clinical settings, it is very important to detect postoperative intimal hyperplasia before its establishment. Hepatocyte growth factor is not only a hepatic growth factor but also a vascular endothelial growth factor. Recently, serum hepatocyte growth factor level was found to be a candidate biomarker for postoperative intimal hyperplasia in our rat model.

6.
Reprod Sci ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134922

RESUMEN

Preeclampsia (PE) is a specific hypertension-related disease in pregnancies, causing adverse pregnancy outcomes. Endothelial cell dysfunction is a major etiology of PE, of which the regulation could affect disease progression. This study focused on hsa_circ_0088196, evaluating its clinical significance in PE and its effect on endothelial cell injury, aiming to identify a novel biomarker for PE and complete its regulating mechanism in disease development. The study enrolled 165 normal pregnancies and 165 pregnancies with gestational hypertension. The significance of hsa_circ_0088196 in discriminating gestational hypertension, predicting PE, and predicting adverse pregnancy outcomes was evaluated based on its serum expression. The effect and mechanism of hsa_circ_0088196 in HUVEC injury were assessed by CCK8, Transwell, ELISA, and western blotting. Significant downregulation of hsa_circ_0088196 could distinguish gestational hypertension pregnancies and predict the risk of PE. Gestational hypertension pregnancies developed PE showed a lower serum hsa_circ_0088196 level, which also discriminated PE patients, predicted severe conditions and adverse pregnancy outcomes. Overexpressing hsa_circ_0088196 alleviated the enhanced proliferation, migration, inflammation, and angiogenesis by hypoxia/reoxygenation (H/R), which was reversed by miR-145-5p. Silencing miR-145-5p showed similar effects on H/R-induced endothelial cell injury, which was reversed by FLT1. Moreover, FLT1 was positively regulated by hsa_circ_0088196, indicating its involvement in the regulation of HUVEC injury by hsa_circ_0088196. Reduced serum hsa_circ_0088196 served as a biomarker for the diagnosis of gestational hypertension, risk evaluation of PE, and the prediction of adverse pregnancy outcomes. hsa_circ_0088196 suppressed endothelial cell injury induced by H/R through modulating the miR-145-5p/FLT1 axis.

7.
J Theor Biol ; 595: 111929, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39197677

RESUMEN

Vascular stent intervention is a pivotal treatment for coronary atherosclerosis, though in-stent thrombosis remains a significant postoperative complication with an unclear underlying mechanism. This study utilized dissipated particle dynamics analysis to investigate the impact of stent and its injury on platelet behavior. The findings suggest that thrombus formation upstream of the stent is mainly initiated by upstream arterial injury, which leads to increased platelet accumulation and activation in that area. While thrombosis downstream of the stent is more directly influenced by the stent itself. The morphology and size of in-stent thrombosis can vary significantly due to the different contributions of the stent and underlying injuries. Additionally, the volume of in-stent thrombosis is affected by the extent of the injury and the viscosity of platelets, showing a notable increase in volume with the lengthening of the injury area and rise in platelet viscosity. This study provides a novel theoretical framework for optimizing stent placement strategies and structural designs by examining the effects of stent struts and associated injuries on thrombus formation.

8.
Metabolites ; 14(8)2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39195548

RESUMEN

As an unhealthy dietary habit, a high-salt diet can affect the body's endocrine system and metabolic processes. As one of the most important metabolites, bile acids can prevent atherosclerosis and reduce the risk of developing cardiovascular diseases. Therefore, in the present study, we aimed to reveal the bile acid metabolism changes in salt-sensitive hypertension-induced vascular endothelial injury. The model was established using a high-salt diet, and the success of this procedure was confirmed by detecting the levels of the blood pressure, vascular regulatory factors, and inflammatory factors. An evaluation of the histological sections of arterial blood vessels and kidneys confirmed the pathological processes in these tissues of experimental rats. Bile acid metabolism analysis was performed to identify differential bile acids between the low-salt diet group and the high-salt diet group. The results indicated that the high-salt diet led to a significant increase in blood pressure and the levels of endothelin-1 (ET-1) and tumor necrosis factor-α (TNF-α). The high-salt diet causes disorders in bile acid metabolism. The levels of four differential bile acids (glycocholic acid, taurolithocholic acid, tauroursodeoxycholic acid, and glycolithocholic acid) significantly increased in the high-salt group. Further correlation analysis indicated that the levels of ET-1 and TNF-α were positively correlated with these differential bile acid levels. This study provides new evidence for salt-sensitive cardiovascular diseases and metabolic changes caused by a high-salt diet in rats.

9.
J Orthop Surg Res ; 19(1): 393, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970109

RESUMEN

BACKGROUND: To aim of this study is to assess the mechanism through which Desertliving Cistanche modulates the PI3K/AKT signaling pathway in the treatment of hyperlipidemic osteoporosis in ovariectomized rats. METHODS: We randomly assigned specific-pathogen-free (SPF) rats into five groups (n = 10 per group). The normal control group received a standard diet, while the model group, atorvastatin group, diethylstilbestrol group, and treatment group were fed a high-fat diet. Four weeks later, bilateral ovariectomies were conducted, followed by drug interventions. After six weeks of treatment, relevant indicators were compared and analyzed. RESULTS: Compared to the normal control group, rats in the model group exhibited blurred trabecular morphology, disorganized osteocytes, significantly elevated levels of bone-specific alkaline phosphatase (BALP), bone Gla-protein (BGP), total cholesterol (TC), tumor necrosis factor-α (TNF-α), and receptor activator of NF-κB ligand (RANKL). Also, the model group revealed significantly reduced levels of ultimate load, fracture load, estradiol (E2), bone mineral density (BMD), osteoprotegerin (OPG), and phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt) in femoral tissue. The atorvastatin group presented with higher TC and TNF-α levels compared to the normal control group. Conversely, the treatment group demonstrated enhanced trabecular morphology, denser structure, smaller bone marrow cavities, and reduced BALP, BGP, TC, TNF-α, and RANKL levels. Furthermore, the treatment group exhibited higher levels of E2, BMD, OPG, and PI3K and Akt in bone tissue compared to the model group. The treatment group also had lower TC and TNF-α levels than the atorvastatin group. Biomechanical analysis indicated that after administration of Desertliving Cistanche, the treatment group had reduced body mass, increased ultimate and fracture load of the femur, denser bone structure, smaller bone marrow cavities, and altered periosteal arrangement compared to the model group. CONCLUSION: Our study revealed that Desertliving Cistanche demonstrated significant efficacy in preventing and treating postmenopausal hyperlipidemic osteoporosis in rats.


Asunto(s)
Cistanche , Hiperlipidemias , Osteoporosis , Ovariectomía , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Animales , Ovariectomía/efectos adversos , Femenino , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Hiperlipidemias/complicaciones , Hiperlipidemias/metabolismo , Osteoporosis/etiología , Osteoporosis/metabolismo , Ratas , Ratas Sprague-Dawley , Densidad Ósea/efectos de los fármacos , Distribución Aleatoria
10.
Biomolecules ; 14(7)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39062593

RESUMEN

This study sought to explore potential roles of endothelial ferroptosis in radiation-associated atherosclerosis (RAA) and molecular mechanisms behind this phenomenon. Here, an in vivo RAA mouse model was used and treated with ferroptosis inhibitors. We found that the RAA group had a higher plaque burden and a reduction in endothelial cells with increased lipid peroxidation compared to the control group, while ameliorated by liproxstatin-1. In vitro experiments further confirmed that radiation induced the occurrence of ferroptosis in human artery endothelial cells (HAECs). Then, proteomics analysis of HAECs identified domain-containing protein 2 (DDHD2) as a co-differentially expressed protein, which was enriched in the lipid metabolism pathway. In addition, the level of lipid peroxidation was elevated in DDHD2-knockdown HAECs. Mechanistically, a significant decrease in the protein and mRNA expression of glutathione peroxidase 4 (GPX4) was observed in HAECs following DDHD2 knockdown. Co-immunoprecipitation assays indicated a potential interaction between DDHD2 and nuclear factor erythroid 2-related factor 2 (Nrf2). The downregulation of Nrf2 protein was also detected in DDHD2-knockdown HAECs. In conclusion, our findings suggest that radiation-induced endothelial ferroptosis accelerates atherosclerosis, and DDHD2 is a potential regulatory protein in radiation-induced endothelial ferroptosis through the Nrf2/GPX4 pathway.


Asunto(s)
Aterosclerosis , Células Endoteliales , Ferroptosis , Factor 2 Relacionado con NF-E2 , Fosfolipasas , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Animales , Humanos , Masculino , Ratones , Aterosclerosis/metabolismo , Aterosclerosis/patología , Aterosclerosis/etiología , Aterosclerosis/genética , Células Endoteliales/metabolismo , Células Endoteliales/patología , Peroxidación de Lípido , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Transducción de Señal , Fosfolipasas/genética , Fosfolipasas/metabolismo
11.
Artículo en Inglés | MEDLINE | ID: mdl-38980654

RESUMEN

To investigate the impacts of circ_0069094 on acute coronary syndrome. Real-time polymerase chain reaction was used to detect the expression levels of circ_0069094, and its diagnostic performance was evaluated using ROC curve. Spearman's method was performed for correlation analysis. The levels of SOD, MDA, vWF in ACS rat models were assessed by commercial kits. The activities of H/R cell models were detected by CCK-8, Transwell, flow cytometry. The GO and KEGG were performed to analyze the function of targeted genes of miR-484. The concentration of circ_0069094 was decreased in patients with ACS, ACS rat models and H/R HUVEC models. The dysfunction of SOD, MDA, vWF, LVIDs, LVDD, and LVEF in the ACS models was regulated by the increase of circ_0069094. The viability, migration, apoptosis of the H/R models were regulated by circ_0069094. MiR-484 was a ceRNA of circ_0069094 and mediated the function of circ_0069094.

12.
Artículo en Inglés | MEDLINE | ID: mdl-39039329

RESUMEN

As one of the most commonly used antidiabetic medications clinically, liraglutide is involved in the protection of vascular endothelium, and whether it can relieve high glucose-induced vascular endothelial damage was unknown. This study aims to address the response of liraglutide (LIRA) on human umbilical vein endothelial cells, as well as to elucidate its possible underlying mechanism. We established a vascular endothelial cell injury model by exposing human umbilical vein endothelial cells (HUVECs) to high glucose, and used LIRA pretreatment before HG treatment to address the endothelial protective effect of LIRA. Our results suggest that LIRA prevented HG-induced HUVEC apoptosis, oxidative stress, inflammasome activation, and pyroptosis. Furthermore, silencing of tribbles homolog 3 (TRIB3) could markedly reduce HG-induced HUVEC apoptosis, ROS level, the expressions of TXNIP, cleaved caspase3, NLRP3, and caspase1, indicating TRIB3 inhibition protected HUVECs against HG-induced vascular endothelial injury. In addition, LIRA restrained NF-κB/IκB-α signaling pathway activation in HUVECs. Thus, LIRA appears to mitigate HG-induced apoptosis, oxidative stress, inflammasome activation, and pyroptosis in HUVECs via regulating the TRIB3/NF-κB/IκB-α signaling pathway. Our study provides new insight into the mechanisms underlying the protective activity of LIRA against the vascular endothelial injury in diabetic vascular complication.

13.
Angiogenesis ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060773

RESUMEN

As a vital component of blood vessels, endothelial cells play a key role in maintaining overall physiological function by residing between circulating blood and semi-solid tissue. Various stress stimuli can induce endothelial injury, leading to the onset of corresponding diseases in the body. In recent years, the importance of mitochondria in vascular endothelial injury has become increasingly apparent. Mitochondria, as the primary site of cellular aerobic respiration and the organelle for "energy information transfer," can detect endothelial cell damage by integrating and receiving various external stress signals. The generation of reactive oxygen species (ROS) and mitochondrial dysfunction often determine the evolution of endothelial cell injury towards necrosis or apoptosis. Therefore, mitochondria are closely associated with endothelial cell function, helping to determine the progression of clinical diseases. This article comprehensively reviews the interconnection and pathogenesis of mitochondrial-induced vascular endothelial cell injury in cardiovascular diseases, renal diseases, pulmonary-related diseases, cerebrovascular diseases, and microvascular diseases associated with diabetes. Corresponding therapeutic approaches are also provided. Additionally, strategies for using clinical drugs to treat vascular endothelial injury-based diseases are discussed, aiming to offer new insights and treatment options for the clinical diagnosis of related vascular injuries.

14.
Adv Kidney Dis Health ; 31(3): 255-264, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-39004465

RESUMEN

Thrombotic microangiopathy (TMA) is a pathological lesion that occurs due to endothelial injury. It can be seen in a heterogenous group of disorders, typically characterized by microangiopathic hemolytic anemia, thrombocytopenia, and end-organ ischemia. TMA can also be renal limited with no systemic manifestations. There are multiple etiologies of a TMA with complement activation being a core underlying mechanism, although the nature and extent of complement involvement can vary. A further complicated factor is the cross talk between complement, neutrophils, and coagulation pathways in the pathophysiology of TMAs. Therefore, a thorough and systematic clinical history and laboratory evaluation are critical to establish the cause and pathophysiology of a TMA. Furthermore, TMAs are associated with significant morbidity and mortality, and timely diagnosis is key for appropriate management and to prevent end-stage kidney disease and other associated complications. In this review, we focus on the pathology, mechanisms, diagnostic work up and treatment of TMAs associated with various etiologies. We also define the complement evaluations that should be conducted in these patients and further highlight the currently approved complement therapies as well as others in the pipeline.


Asunto(s)
Microangiopatías Trombóticas , Humanos , Microangiopatías Trombóticas/diagnóstico , Microangiopatías Trombóticas/terapia , Microangiopatías Trombóticas/patología , Microangiopatías Trombóticas/fisiopatología , Activación de Complemento , Riñón/patología , Riñón/inmunología , Riñón/fisiopatología , Proteínas del Sistema Complemento/inmunología , Proteínas del Sistema Complemento/metabolismo
15.
Transplant Cell Ther ; 30(9): 931.e1-931.e10, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38944154

RESUMEN

Transplant associated thrombotic microangiopathy (TA-TMA) is a complication of hematopoietic cell transplant (HCT) associated with endothelial injury resulting in severe end organ damage, acute and long-term morbidity, and mortality. Myeloablative conditioning is a known risk factor, though specific causative agents have not been identified. We hypothesized that the combination of cyclophosphamide and thiotepa (CY + TT) is particularly toxic to the endothelium, placing patients at elevated risk for TA-TMA. We conducted a retrospective review of pediatric and young adult patients who received conditioned autologous and allogeneic HCT between 2012 and August 2023 at UCSF Benioff Children's Hospital, San Francisco. We excluded patients undergoing gene therapy or triple tandem transplants for brain tumors. Neuroblastoma tandem transplants were classified a single transplant occurrence. High dose N-acetylcysteine (NAC) prophylaxis was incorporated into the institutional standard of care from December 2016-May 2019 and May 2022-August 2023. Defibrotide was given prophylactically to patients deemed high-risk for sinusoidal obstruction syndrome (SOS) per institutional guidelines or on clinical trial NCT#02851407 for SOS prophylaxis or NCT#03384693 for TA-TMA prophylaxis. Kaplan-Meier analysis was used to estimate the 1-year cumulative incidence of TA-TMA. Univariate analysis was performed for each of the potential risk factors of interest using log-rank tests and bivariate analysis with Cox regression models using backward selection and hazard ratios were built using all covariates with a univariate P-value < .2 for allogeneic HCT. SPSS (v29) was used to estimate all summary statistics, cumulative incidences, and uni- and bi-variate analyses. A total of 558 transplants were performed with 43 patients developing TA-TMA, for a 1-year cumulative incidence of 8.6% (95% CI, 5.9-11.3) and 7.2% (95% CI, 2.9-11.5) in allogeneic and autologous HCTs, respectively (P = .62). In allogeneic recipients (n = 417), the 1-year cumulative incidence of TA-TMA with CY + TT as part of conditioning was 35.7% (95% CI, 15.7-55.7) compared to 11.7% (95% CI, 7.2-16.2) with either CY or TT alone, and 1.2% (95% CI, 0-2.8) if neither agent was included in the conditioning regimen (P < .001). Use of either CY or TT (HR = 10.14; P = .002) or CY + TT (HR = 35.93; P < .001), viral infections (HR = 4.3; P = .017) and fungal infections (HR = 2.98; P = 0.027) were significant factors resulting in increased risk for developing TA-TMA. In subjects undergoing autologous HCT (n = 141), the 1-year cumulative incidence of TA-TMA with CY + TT was 19.6% (95% CI, 8.8-30.6) while TA-TMA did not occur in patients receiving either CY or TT alone or when neither were included (P < .001). TA-TMA occurred only in patients with neuroblastoma receiving CY + TT as part of their conditioning. For autologous patients who received CY + TT, those who were CMV seronegative at the time of HCT had an incidence of TA-TMA of 6.7% (95% CI, 0.1-15.7) compared to 38.1% (95% CI, 35-41.2) for those CMV seropositive (P = .007). These data show that CY or TT alone or in combination as part of pre-transplant conditioning prior to HCT increase the incidence of TA-TMA. Alternative conditioning excluding the combination of CY + TT should be considered whenever possible to limit the development of TA-TMA.


Asunto(s)
Ciclofosfamida , Trasplante de Células Madre Hematopoyéticas , Tiotepa , Microangiopatías Trombóticas , Acondicionamiento Pretrasplante , Humanos , Tiotepa/administración & dosificación , Tiotepa/uso terapéutico , Microangiopatías Trombóticas/epidemiología , Microangiopatías Trombóticas/etiología , Ciclofosfamida/efectos adversos , Ciclofosfamida/uso terapéutico , Masculino , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Femenino , Estudios Retrospectivos , Adolescente , Niño , Adulto Joven , Acondicionamiento Pretrasplante/efectos adversos , Preescolar , Adulto , Factores de Riesgo , Lactante
16.
Exp Eye Res ; 245: 109952, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38838973

RESUMEN

Decrease of human corneal endothelial cell (CEC) density leads to corneal edema, progressive corneal opacity, and reduced visual acuity. A reduction in CEC density may be related to elevated levels of inflammatory cytokines, such as tumor necrosis factor (TNF)-α and interferon (INF)-γ. PANoptosis, characterized by the activation of apoptosis, necroptosis, and pyroptosis, could be a factor in the loss of CECs driven by TNF-α and INF-γ. Cytokines also stimulate monocytes adhesion to endothelium. It has been shown in previous research that curcumin plays protective roles against numerous corneal inflammatory diseases. However, it is not determined whether curcumin acts as an anti-PANoptotic agent or if it mitigates monocyte adhesion to CECs. Therefore, this research aimed to explor the potential therapeutic effects of curcumin and its underlying mechanisms in the loss of CECs. CEC injury models were established, and curcumin was injected subconjunctivally. Clinical evaluation of the corneas was conducted using a scoring system and anterior segment photography. Corneal observation was performed with hematoxylin and eosin staining and immunostaining of zona occludens-1(ZO-1). Apoptotic cells within the corneal endothelium were observed using TUNEL staining. The detection of primary proteins expression was accomplished through Western blot analysis. Interleukin (IL)-1ß and macrophage chemotactic protein 1 (MCP-1) levels were determined via ELISA, while the expression of cleaved caspase-3, gasdermin-D (GSDMD), phosphor-mixed lineage kinase domain-like protein (p-MLKL) and intercellular cell adhesion molecule-1 were confirmed by immunofluorescence. Myeloperoxidase (MPO) activity was measured in aqueous humors. Curcumin treatment attenuated the loss of CECs and corneal edema caused by TNF-α and IFN-γ. Besides, it decreased the count of TUNEL-positive cells, and inhibited the upregulation of cleaved caspase-3, cleaved caspase-6, cleaved caspase-7, and cleaved poly (ADP-ribose) polymerase. Moreover, both the expression and phosphorylation of MLKL and receptor-interacting protein 3 were decreased in curcumin-treated rats. Furthermore, curcumin also lowered the expression of cleaved caspase-1, diminished the levels of IL1ß and MCP-1, and inhibited the activity of MPO. Besides, the expression of intercellular cell adhesion molecule-1, vascular cell adhesion molecule-1, as well as the number of CD11b-positive cells adhered to the CECs decreased for the administration of curcumin.


Asunto(s)
Adhesión Celular , Curcumina , Modelos Animales de Enfermedad , Endotelio Corneal , Interferón gamma , Monocitos , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa , Curcumina/farmacología , Endotelio Corneal/efectos de los fármacos , Endotelio Corneal/patología , Endotelio Corneal/metabolismo , Ratas , Animales , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Interferón gamma/metabolismo , Adhesión Celular/efectos de los fármacos , Masculino , Necroptosis/efectos de los fármacos , Proteína de la Zonula Occludens-1/metabolismo , Western Blotting
17.
Exp Cell Res ; 440(1): 114103, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38848951

RESUMEN

Elevated homocysteine (Hcy) levels have been recognized as significant risk factor for cardiovascular and cerebrovascular diseases, closely related to endothelial injury. While expression of Ciliary Neurotrophic Factor (CNTF) significantly increases during Hcy-induced vascular endothelial cell injury, the precise molecular pathways through which CNTF operates remain to be clarified. To induce vascular endothelial cell injury, human umbilical vein endothelial cells (HUVECs) were treated with Hcy. Cell viability and apoptosis in HUVECs were assessed using the CCK-8 assay and flow cytometry. Western blot analysis determined the expression levels of the JAK2-STAT3 pathway, inflammation-related factors (IL-1ß, NLRP3, ICAM-1, VCAM-1), and apoptosis-related factors (cleaved Caspase-3 and Bax). Immunofluorescence staining and western blotting were employed to examine CD31 and α-SMA expression. Knockdown of CNTF was achieved using lentiviral interference, and its effects on inflammation and cell injury were evaluated. Chromatin immunoprecipitation (ChIP) and dual luciferase reporter analysis were conducted to investigate the interaction between the MAFK and CNTF promoters. Our results indicated that Hcy induced high expression of CNTF and activated the JAK2-STAT3 signaling pathway, thereby upregulating factors associated with inflammation and cell apoptosis. Inhibiting CNTF alleviated Hcy-induced inflammation and cell injury. MAFK was identified as a transcription factor promoting CNTF transcription, and its overexpression exacerbated inflammation and cell injury in Hcy-treated HUVECs through the CNTF-JAK2-STAT3 axis, which could be reversed by knocking down CNTF. Activation of MAFK leads to CNTF upregulation, which activates the JAK2-STAT3 signaling pathway, regulating inflammation and inducing injury in Hcy-exposed vascular endothelial cells. Targeting CNTF or its upstream regulator MAFK may represent potential therapeutic strategies for mitigating endothelial dysfunction associated with hyperhomocysteinemia and cardiovascular diseases.


Asunto(s)
Apoptosis , Factor Neurotrófico Ciliar , Homocisteína , Células Endoteliales de la Vena Umbilical Humana , Inflamación , Janus Quinasa 2 , Factor de Transcripción STAT3 , Transducción de Señal , Janus Quinasa 2/metabolismo , Humanos , Factor de Transcripción STAT3/metabolismo , Homocisteína/farmacología , Homocisteína/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Inflamación/metabolismo , Inflamación/patología , Factor Neurotrófico Ciliar/metabolismo , Factor Neurotrófico Ciliar/genética , Apoptosis/efectos de los fármacos , Células Cultivadas , Supervivencia Celular/efectos de los fármacos
18.
Biol Pharm Bull ; 47(7): 1248-1254, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38866477

RESUMEN

Ethanol (alcohol) is a risk factor that contributes to non-communicable diseases. Chronic abuse of ethanol is toxic to both the heart and overall health, and even results in death. Ethanol and its byproduct acetaldehyde can harm the cardiovascular system by impairing mitochondrial function, causing oxidative damage, and reducing contractile proteins. Endothelial cells are essential components of the cardiovascular system, are highly susceptible to ethanol, either through direct or indirect exposure. Thus, protection against endothelial injury is of great importance for persons who chronic abuse of ethanol. In this study, an in vitro model of endothelial injury was created using ethanol. The findings revealed that a concentration of 20.0 mM of ethanol reduced cell viability and Bcl-2 expression, while increasing cell apoptosis, intracellular reactive oxygen species (ROS) levels, mitochondrial depolarization, and the expression of Bax and cleaved-caspase-3 in endothelial cells. Further study showed that ethanol promoted nuclear translocation of nuclear factor kappa B (NF-κB), increased the secretion of tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-6 in the culture medium, and inhibited nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling pathway. The aforementioned findings suggest that ethanol has a harmful impact on endothelial cells. Nevertheless, the application of epigallocatechin-3-gallate (EGCG) to the cells can effectively mitigate the detrimental effects of ethanol on endothelial cells. In conclusion, EGCG alleviates ethanol-induced endothelial injury partly through alteration of NF-κB translocation and activation of the Nrf2 signaling pathway. Therefore, EGCG holds great potential in safeguarding individuals who chronically abuse ethanol from endothelial dysfunction.


Asunto(s)
Catequina , Etanol , Factor 2 Relacionado con NF-E2 , FN-kappa B , Transducción de Señal , Etanol/toxicidad , Factor 2 Relacionado con NF-E2/metabolismo , Catequina/análogos & derivados , Catequina/farmacología , Catequina/uso terapéutico , FN-kappa B/metabolismo , Humanos , Transducción de Señal/efectos de los fármacos , Apoptosis/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
19.
Indian J Thorac Cardiovasc Surg ; 40(4): 424-432, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38919177

RESUMEN

Introduction: Long saphenous vein grafts (LSVGs) are pivotal conduits in coronary artery bypass grafting (CABG), yet concerns persist regarding early failure and long-term patency. Endothelial damage, a potent initiator of graft failure, necessitates exploration of factors contributing to endothelial injury during LSVG preparation. Methods: A prospective, single-center study was conducted, assessing the impact of unregulated distension pressure on LSVG endothelium during CABG. Histological and CD31 (cluster of differentiation 31) immunohistochemical analyses were performed on 21 paired vein samples, categorized into non-distended (group A) and distended (group B) groups. Pressure recordings were obtained using different syringe sizes during vein distension. Results: Histological examination revealed a significantly higher percentage of endothelial cell loss in distended veins (31.95% ± 31.31) compared to non-distended veins (11.67% ± 28.65) (p = 0.034). CD31 immunohistochemistry corroborated greater endothelial cell loss in distended veins (p = 0.001). The pressure recordings with a 20-cc syringe, as opposed to using a 10-cc syringe, were considerably lower (44.5 mmHg vs. 92.75 mmHg) emphasizing the inverse relationship between syringe size and pressure generated. In our study, pre-existing endothelial injury was observed in one-third of diabetic patients (36%), with all instances of such injury exclusively identified in individuals with diabetes. Conclusion: Unregulated distension pressure during LSVG preparation is associated with greater endothelial damage, as evidenced by histological and immunohistochemical analyses. The inverse relationship between syringe size and pressure underscores the importance of controlled distension.

20.
Antioxidants (Basel) ; 13(6)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38929151

RESUMEN

Xanthine Oxidoreductase (XOR) is a ubiquitous, essential enzyme responsible for the terminal steps of purine catabolism, ultimately producing uric acid that is eliminated by the kidneys. XOR is also a physiological source of superoxide ion, hydrogen peroxide, and nitric oxide, which can function as second messengers in the activation of various physiological pathways, as well as contribute to the development and the progression of chronic conditions including kidney diseases, which are increasing in prevalence worldwide. XOR activity can promote oxidative distress, endothelial dysfunction, and inflammation through the biological effects of reactive oxygen species; nitric oxide and uric acid are the major products of XOR activity. However, the complex relationship of these reactions in disease settings has long been debated, and the environmental influences and genetics remain largely unknown. In this review, we give an overview of the biochemistry, biology, environmental, and current clinical impact of XOR in the kidney. Finally, we highlight recent genetic studies linking XOR and risk for kidney disease, igniting enthusiasm for future biomarker development and novel therapeutic approaches targeting XOR.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA