Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 848, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256685

RESUMEN

In plant production, evaluation of salt stress protectants concerning their potential to improve growth and productivity under saline stress is critical. Bacillus subtilis (Bs) and cobalt (Co) have been proposed to optimize salt stress tolerance in coriander (Coriandrum sativum L. cv. Balady) plants by influencing some physiological activities. The main aim of this work is to investigate the response of (Bs) and (Co) as eco-safe salt stress protectants to resist the effect of salinity, on growth, seed, and essential oil yield, and the most important biochemical constituents of coriander produced under salt stress condition. Therefore, in a split-plot factorial experiment design in the RCBD (randomized complete block design), four levels of salinity of NaCl irrigation water (SA) were assigned to the main plots; (0.5, 1.5, 4, and 6 dS m-1); and six salt stress protectants (SP) were randomly assigned to the subplots: distilled water; 15 ppm (Co1); 30 ppm (Co2); (Bs); (Co1 + Bs); (Co2 + Bs). The study concluded that increasing SA significantly reduced coriander growth and yield by 42.6%, which could be attributed to ion toxicity, oxidative stress, or decreased vital element content. From the results, we recommend that applying Bs with Co (30 ppm) was critical for significantly improving overall growth parameters. This was determined by the significant reduction in the activity of reactive oxygen species scavenging enzymes: superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) and non-enzyme: proline by 5, 11.3, 14.7, and 13.8% respectively, while increasing ascorbic acid by 8% and preserving vital nutrient levels and enhancing plant osmotic potential to buffer salt stress, seed yield per plant, and essential oil yield increased by 12.6 and 18.8% respectively. The quality of essential oil was indicated by highly significant quantities of vital biological phytochemicals such as linalool, camphor, and protein which increased by 10.3, 3.6, and 9.39% respectively. Additional research is suggested to determine the precise mechanism of action of Bs and Co's dual impact on medicinal and aromatic plant salt stress tolerance.


Asunto(s)
Bacillus subtilis , Cobalto , Coriandrum , Tolerancia a la Sal , Coriandrum/efectos de los fármacos , Bacillus subtilis/fisiología , Bacillus subtilis/efectos de los fármacos , Tolerancia a la Sal/efectos de los fármacos , Fitoquímicos , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Aceites Volátiles/metabolismo
2.
Microbiol Res ; 283: 127688, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38479233

RESUMEN

Plant secondary metabolites possess a wide range of pharmacological activities and play crucial biological roles. They serve as both a defense response during pathogen attack and a valuable drug resource. The role of microorganisms in the regulation of plant secondary metabolism has been widely recognized. The addition of specific microorganisms can increase the synthesis of secondary metabolites, and their beneficial effects depend on environmental factors and plant-related microorganisms. This article summarizes the impact and regulatory mechanisms of different microorganisms on the main secondary metabolic products of plants. We emphasize the mechanisms by which microorganisms regulate hormone levels, nutrient absorption, the supply of precursor substances, and enzyme and gene expression to promote the accumulation of plant secondary metabolites. In addition, the possible negative feedback regulation of microorganisms is discussed. The identification of additional unknown microbes and other driving factors affecting plant secondary metabolism is essential. The prospects for further analysis of medicinal plant genomes and the establishment of a genetic operation system for plant secondary metabolism research are proposed. This study provides new ideas for the use of microbial resources for biological synthesis research and the improvement of crop anti-inverse traits for the use of microbial resources.


Asunto(s)
Plantas Medicinales , Metabolismo Secundario
3.
Front Microbiol ; 15: 1334711, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38384271

RESUMEN

Introduction: Polyethylene mulch is a kind of inorganic mulch widely used in agriculture. The effects of plastic mulch debris on the structure of plant soil and root growth have been fully studied, but their effects on endophytic microbial communities have not been explored to a large extent. Methods: In this study, High-throughput sequencing of bacterial 16S rRNA genes and fungal ITS region sequences were used to analyze microbial community structure and composition in rhizosphere soil and root endophytic of tea plant under three different weeding methods: polyethylene mulching, hand weeding and no weeding (CK). Results: The results showed that the weeding methods had no significant effect on the rhizosphere and root endophytic microbial abundance, but the rhizosphere bacterial structure covered by polyethylene mulch was significantly different than hand weeding and CK. The rhizosphere fungal diversity was also significantly higher than the other two analyzed treatments. The community abundance of rhizosphere microorganisms Acidobacteria, Candidatus Rokubacteria and Aspergillus covered by polyethylene mulch decreased significantly, whereas Bradyrhizobium, Solirubrobacterales and Alphaproteobacteria increased significantly. The abundance of bacteria Ktedonobacter, Reticulibacter, Ktedonosporobacter and Dictyobacter communities covered by polyethylene mulch was significantly changed, and the abundance of Fusarium and Nitrobacteraceae was significantly increased. Rhizosphere dominant bacteria were negatively correlated with soil available nitrogen content, while dominant fungi were significantly correlated with soil pH, total nitrogen and total potassium. Discussion: Polyethylene mulch forms an independent micro-ecological environment. At the same time, the soil nutrient environment was enriched by affecting the nitrogen cycle, and the composition of microbial community was affected. This study elucidated the effects of polyethylene mulch on soil microbial community in tea garden and provided a new theoretical understanding for weed management.

4.
Front Microbiol ; 13: 1006686, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466690

RESUMEN

Introduction: The response mechanism of Rhododendron simsii and its endophytic microorganism to heat stress is still unclear. Methods: The light incubator was used to set the temperature gradients, and the control (CK) was (day/night: 14/10 h) 25/22°C, the moderate-heat-stress (MHS) was 35/30°C and the high-heat-stress (HHS) was 40/35°C. Results: Compared with CK, MHS significantly increased the contents of malondialdehyde, hydrogen peroxide, proline, and soluble sugar, as well as the activities of catalase and peroxidase in leaf, while HHS increased the activities of ascorbate peroxidase, and decreased chlorophyll content. Compared with CK, MHS reduced soil available nitrogen (N) content. Both heat stress changed the endophytic microbial community structure in roots. MHS enriched Pezicula and Paracoccus, while HHS significantly enriched Acidothermus and Haliangium. The abundance of Pezicula positively correlated with the contents of chlorophyll a and proline in leaf, and negatively correlated with soil ammonium N content. The abundance of Pezicula and Haliangium positively correlated with soluble sugar and malondialdehyde contents, respectively. Conclusions: Our results suggest that root endophytic microorganisms play an important role in helping Rhododendron resisting heat stress, mainly by regulating soil N content and plant physiological characteristics.

5.
Front Microbiol ; 13: 958917, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36118246

RESUMEN

Endophytic microbial communities of lichen are emerging as novel microbial resources and for exploration of potential biotechnological applications. Here, we focused on a medicinal lichen Usnea longissima, and investigated its bacterial and fungal endophytes. Using PacBio 16S rRNA and ITS amplicon sequencing, we explored the diversity and composition of endophytic bacteria and fungi in U. longissima collected from Tibet at five altitudes ranging from 2,989 to 4,048 m. A total of 6 phyla, 12 classes, 44 genera, and 13 species of the bacterial community have been identified in U. longissima. Most members belong to Alphaproteobacteria (42.59%), Betaproteobacteria (33.84%), Clostridia (13.59%), Acidobacteria (7%), and Bacilli (1.69%). As for the fungal community, excluding the obligate fungus sequences, we identified 2 phyla, 15 classes, 65 genera, and 19 species. Lichen-related fungi of U. longissima mainly came from Ascomycota (95%), Basidiomycota (2.69%), and unidentified phyla (2.5%). The presence of the sequences that have not been characterized before suggests the novelty of the microbiota. Of particular interest is the detection of sequences related to lactic acid bacteria and budding yeast. In addition, the possible existence of harmful bacteria was also discussed. To our best knowledge, this is the first relatively detailed study on the endophytic microbiota associated with U. longissima. The results here provide the basis for further exploration of the microbial diversity in lichen and promote biotechnological applications of lichen-associated microbial strains.

6.
PeerJ ; 10: e13675, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35782100

RESUMEN

Stevia rebaudiana (Bertoni) Bertoni is a plant of economic interest in the food and pharmaceutical industries due its steviol glycosides (SG), which are rich in metabolites that are 300 times sweeter than sucrose. In addition, S. rebaudiana plants contain phenolic compounds and flavonoids with antioxidant activity. Endophytic bacteria promote the growth and development and modulate the metabolism of the host plant. However, little is known regarding the role of endophytic bacteria in the growth; synthesis of SG, flavonoids and phenolic compounds; and the relationship between trichome development and specialized metabolites in S. rebaudiana, which was the subject of this study. The 12 bacteria tested did not increase the growth of S. rebaudiana plants; however, the content of SG increased with inoculation with the bacteria Enterobacter hormaechei H2A3 and E. hormaechei H5A2. The SG content in leaves paralleled an increase in the density of glandular, short, and large trichome. The image analysis of S. rebaudiana leaves showed the presence of SG, phenolic compounds, and flavonoids principally in glandular and short trichomes. The increase in the transcript levels of the KO, KAH, UGT74G1, and UGT76G1 genes was related to the SG concentration in plants of S. rebaudiana inoculated with E. hormaechei H2A3 and E. hormaechei H5A2. In conclusion, inoculation with the stimulating endophytes E. hormaechei H2A3 and E. hormaechei H5A2 increased SG synthesis, flavonoid content and flavonoid accumulation in the trichomes of S. rebaudiana plants.


Asunto(s)
Stevia , Stevia/genética , Tricomas/genética , Expresión Génica , Flavonoides/metabolismo
7.
Front Microbiol ; 13: 1100232, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36726561

RESUMEN

Although microorganisms and silicon are well documented as factors that mitigate salt stress, their effect mitigating saline-alkaline stress in plants remains unknown. In this study, wheat plant seeds were treated with silicon, Enterobacter sp. FN0603 alone and in combination of both. Wheat seeds were soaked in silicon and bacterial solutions and sown in pots containing artificial saline-alkaline soils to compare the effects among all treatments. The results showed that the treatments with silicon and FN0603 alone significantly changed plant morphology, enhanced the rhizosphere soil nutrient content and enzyme activities, improved some important antioxidant enzyme activities (e.g., superoxide dismutase) and the contents of small molecules (e.g., proline) that affected osmotic conditions in the top second leaves. However, treatment with silicon and FN0603 in combination significantly further increased these stress tolerance indexes and eventually promoted the plant growth dramatically compared to the treatments with silicon or FN0603 alone (p < 0.01), indicating a synergic plant growth-promoting effect. High relative abundance of strain FN0603 was detected in the treated plants roots, and silicon further improved the colonization of FN0603 in stressed wheat roots. Strain FN0603 particularly when present in combination with silicon changed the root endophytic bacterial and fungal communities rather than the rhizosphere communities. Bipartite network analysis, variation partitioning analysis and structure equation model further showed that strain FN0603 indirectly shaped root endophytic bacterial and fungal communities and improved plant physiology, rhizosphere soil properties and plant growth through significantly and positively directing FN0603-specific biomarkers (p < 0.05). This synergetic effect of silicon and plant growth-promoting microorganism in the mitigation of saline-alkaline stress in plants via shaping root endophyte community may provide a promising approach for sustainable agriculture in saline-alkaline soils.

8.
Stand Genomic Sci ; 13: 30, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30410642

RESUMEN

Bacillus amyloliquefaciens subsp. plantarum strain Fito_F321 is a naturally occurring strain in vineyard, with the ability to colonise grapevine and which unveils a naturally antagonistic potential against phytopathogens of grapevine, including those responsible for the Botryosphaeria dieback, a GTD disease. Herein we report the draft genome sequence of B. amyloliquefaciens subsp. plantarum Fito_F321, isolated from the leaf of Vitis vinifera cv. Merlot at Bairrada appellation (Cantanhede, Portugal). The genome size is 3,856,229 bp, with a GC content of 46.54% that contains 3697 protein-coding genes, 86 tRNA coding genes and 5 rRNA genes. The draft genome of strain Fito_F321 allowed to predict a set of bioactive compounds as bacillaene, difficidin, macrolactin, surfactin and fengycin that due to their antimicrobial activity are hypothesized to be of utmost importance for biocontrol of grapevine diseases.

9.
Curr Pharm Biotechnol ; 18(9): 758-768, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29076425

RESUMEN

BACKGROUND: Prominent among all the organisms that have a potential value for the production of new medicines, are endophytes, fungi and bacteria that live inside plants without harming them. In this study, a total lyophilized extract (TLE) of Paenibacillus polymyxa RNC-D was used. The P. polymyxa lineages are known for their capacity to segregate a large number of extracellular enzymes and bioactive substances. METHODS: The TLE of Paenibacillus polymyxa RNC-D was tested in cell viability assays for cytotoxicity and cytokine production in BALB/3T3 and J774A.1 cell lineages. RESULTS: A 50% mortality rate of fibroblasts (BALB/3T3) was observed in the 1.171±0.161 mg/mL and 0.956±0.112 mg/mL doses after 48 and 72 hours, respectively, as well as a 50% mortality rate of macrophage cells (J774A.1) in the 0.994±0.170 mg/mL and 0.945±0.280 mg/mL doses after 48 and 72 hours, respectively. The ≈1 mg/mL concentration significantly affected the kinetic of growth in all the measured periods. The extract induced apoptosis and necrosis 24 hours after the ≈1 mg/mL concentration in both tested lineages. The treatment with the ≈1 mg/mL concentration led to the production of TNF-α and IFN-γ cytokines in 24 hours. IL-12 and IL-10 began to be detected as a result of the treatment with 0.1 mg/mL. However, with the 0.5 mg/mL dose in 24 hours, a significant reduction in IL-10 was observed. CONCLUSION: Our data suggest that the TLE of P. polymyxa RNC-D modulated the production of cytokines with different patterns of immune response in a dose-dependent way.


Asunto(s)
Apoptosis/efectos de los fármacos , Productos Biológicos/farmacología , Citocinas/biosíntesis , Endófitos/metabolismo , Macrófagos/efectos de los fármacos , Paenibacillus polymyxa/metabolismo , Animales , Células 3T3 BALB , Productos Biológicos/aislamiento & purificación , Técnicas de Cultivo de Célula , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Interleucina-10/biosíntesis , Interleucina-12/biosíntesis , Macrófagos/inmunología , Ratones , Factor de Necrosis Tumoral alfa/biosíntesis
10.
Neotrop. entomol ; 39(2): 308-310, mar.-abr. 2010.
Artículo en Inglés | LILACS | ID: lil-547697

RESUMEN

The colonization of Spodoptera frugiperda J.E. Smith larvae and rice seedlings by genetically modified endophytic bacterium Methylobacterium mesophilicum, and also the possible transfer of this bacterium to inside the larva's body during seedlings consumption were studied. The data obtained by bacterial reisolation and fluorescence microscopy showed that the bacterium colonized the rice seedlings, the larva's body and that the endophytic bacteria present in seedlings could be acquired by the larvae. In that way, the transference of endophytic bacterium from plants to insect can be a new and important strategy to insect control using engineered microorganisms.


Asunto(s)
Animales , Methylobacterium , Oryza/microbiología , Spodoptera/microbiología , Larva/microbiología , Methylobacterium/genética , Organismos Modificados Genéticamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA