Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.370
Filtrar
1.
Int J Mol Sci ; 25(17)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39273455

RESUMEN

The relationships between plants and bacteria are essential in agroecosystems and bioinoculant development. The leaf endophytic Pseudomonas protegens E1BL2 was previously isolated from giant Jala maize, which is a native Zea mays landrace of Nayarit, Mexico. Using different Mexican maize landraces, this work evaluated the strain's plant growth promotion and biocontrol against eight phytopathogenic fungi in vitro and greenhouse conditions. Also, a plant field trial was conducted on irrigated fields using the hybrid maize Supremo. The grain productivity in this assay increased compared with the control treatment. The genome analysis of P. protegens E1BL2 showed putative genes involved in metabolite synthesis that facilitated its beneficial roles in plant health and environmental adaptation (bdhA, acoR, trpE, speE, potA); siderophores (ptaA, pchC); and extracellular enzymes relevant for PGPB mechanisms (cel3, chi14), protection against oxidative stress (hscA, htpG), nitrogen metabolism (nirD, nit1, hmpA), inductors of plant-induced systemic resistance (ISR) (flaA, flaG, rffA, rfaP), fungal biocontrol (phlD, prtD, prnD, hcnA-1), pest control (vgrG-1, higB-2, aprE, pslA, ppkA), and the establishment of plant-bacteria symbiosis (pgaA, pgaB, pgaC, exbD). Our findings suggest that P. protegens E1BL2 significantly promotes maize growth and offers biocontrol benefits, which highlights its potential as a bioinoculant.


Asunto(s)
Enfermedades de las Plantas , Pseudomonas , Zea mays , Zea mays/microbiología , Zea mays/genética , Pseudomonas/genética , Pseudomonas/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Hongos/genética , Agricultura/métodos , Genómica/métodos , Genoma Bacteriano
2.
BMC Microbiol ; 24(1): 346, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39277720

RESUMEN

BACKGROUND: Pseudomonas eucalypticola, a new species of the P. fluorescens group that generates most Pseudomonas-based biocontrol agents, has not been found in any plants other than Eucalyptus dunnii leaves. Except for antagonism to the growth of a few fungi, its features in plant growth promotion and disease control have not been evaluated. Here, we identified a similar species of P. eucalypticola, 1021Bp, from endophyte cultures of healthy leaves of English boxwood (Buxus sempervirens 'Suffruticosa') and investigated its antifungal activity, plant growth promotion traits, and potential for boxwood blight control. RESULTS: Colorimetric or plate assays showed the properties of 1021Bp in nitrogen fixation, phosphate solubilization, and production of indole-3-acetic acid (IAA) and siderophores, as well as the growth suppression of all five plant fungal pathogens, including causal agents of widespread plant diseases, gray mold, and anthracnose. Boxwood plant leaves received 87.4% and 65.8% protection from infection when sprayed with cell-free cultural supernatant (CFS) but not the resuspended bacterial cells at 108-9/mL of 1021Bp at one and seven days before inoculation (dbi) with boxwood blight pathogen, Calonectria pseudonaviculata, at 5 × 104 spores/mL. They also received similarly high protection with the 1021Bp cell culture without separation of cells and CFS at 14 dbi (67.5%), suggesting a key role of 1021Bp metabolites in disease control. CONCLUSIONS: Given the features of plant growth and health and its similarity to P. eucalypticola with the P. fluorescens lineage, 1021Bp has great potential to be developed as a safe and environmentally friendly biofungicide and biofertilizer. However, its metabolites are the major contributors to 1021Bp activity for plant growth and health. Application with the bacterial cells alone, especially with nonionic surfactants, may result in poor performance unless survival conditions are present.


Asunto(s)
Enfermedades de las Plantas , Hojas de la Planta , Pseudomonas , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Pseudomonas/genética , Pseudomonas/crecimiento & desarrollo , Pseudomonas/metabolismo , Hojas de la Planta/microbiología , Antibiosis , Ácidos Indolacéticos/metabolismo , Hongos/crecimiento & desarrollo , Hongos/genética , Hongos/clasificación , Hongos/efectos de los fármacos , Sideróforos/metabolismo , Endófitos/metabolismo , Endófitos/genética , Desarrollo de la Planta , Agentes de Control Biológico , Antifúngicos/farmacología , Antifúngicos/metabolismo
3.
Microbiol Resour Announc ; : e0031724, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39248521

RESUMEN

Epichloë species are endophytic fungi that systemically colonize grass species. Here, we report the genome sequences of Epichloë bromicola strains HS and DP isolated for the first time from Elymus ciliaris in Nagoya, Japan.

4.
Braz J Microbiol ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39254801

RESUMEN

Mushroom associated microbes could be utilized to improve crop productivity providing nutrients, plant growth promoting substances, production of hydrolytic enzymes and protecting plant from biotic and abiotic stress. An endophyte designated as KUFC101 was isolated from fruit body of Pleurotus ostreatus and identified as Porostereum umbrinoalutaceum based on nuclear-rRNA gene sequence analysis. Growth in different culture media, metal tolerance, biochemical characterization and effect on chilli plant growth promotion were studied. The isolate showed best growth in Malt extract medium and least growth in synthetic media. It could tolerate toxic metals (Mg, Ca, Fe, Cu, Mn, Zn and Cd each at 100 ppm concentration). It produced amylase, cellulase, chitinase, pectinase, catecholate type of siderophore and indole acetic acid, and inhibited growth of Alternaria solani and Penicillium citrinum. It could colonize in the rhizosphere of chilli plant and influence growth of chilli plant by improving biomass and metabolite content. Porostereum umbrinoalutaceum KUFC101 could be utilized in formulation of biofertiliser under sustainable agricultural system.

5.
Front Microbiol ; 15: 1415329, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39113844

RESUMEN

Some plant-associated microorganisms could improve host plants biotic and abiotic stress tolerance. Imperata cylindrica is a dominant pioneer plant in some abandoned mine lands with higher concentrations of heavy metal (HM). To discover the specific microbiome of I. cylindrica in this extreme environment and evaluate its role, the microbiome of I. cylindrica's seeds and rhizosphere soils from HM heavily contaminated (H) and lightly contaminated (L) sites were studied. It was found that HM-contamination significantly reduced the richness of endophytic bacteria in seeds, but increased the abundance of resistant species, such as Massilia sp. and Duganella sp. Spearman's rank correlation coefficient analysis showed that both Massilia sp. and Duganella sp. showed a significant positive correlation with Zn concentration, indicating that it may have a strong tolerance to Zn. A comparison of the microbiome of rhizosphere soils (RS) and adjacent bare soils (BS) of site H showed that I. cylindrica colonization significantly increased the diversity of fungi in rhizosphere soil and the abundance of Ascomycota associated with soil nutrient cycling. Spearman's rank correlation coefficient analysis showed that Ascomycota was positively correlated with the total nitrogen. Combined with the fact that the total nitrogen content of RS was significantly higher than that of BS, we suppose that Ascomycota may enhance the nitrogen fixation of I. cylindrica, thereby promoting its growth in such an extreme environment. In conclusion, the concentration of HM and nutrient contents in the soil significantly affected the microbial community of rhizosphere soils and seeds of I. cylindrica, in turn, the different microbiomes further affected soil HM concentration and nutrient contents. The survival of I. cylindrica in HM severely contaminated environment may mainly be through recruiting more microorganisms that can enhance its nutrition supply.

6.
Microbiol Resour Announc ; : e0056024, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39189723

RESUMEN

This announcement reports the complete genome sequence of Achromobacter sp. strain E1, which was isolated from the root of maize cultivar (Zheng dan 958) grown in Beijing, China. Achromobacter sp. strain E1 consists of a single, closed genome consisting of 5,975,307 bp, with GC content of 65.86%.

7.
Heliyon ; 10(15): e35814, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170558

RESUMEN

Bacteria that live asymptomatically within plant tissues are known as endophytes. Because of the close relation with the plant host, they have been a matter of interest for application as plant growth promoters. Melia azedarach is a widely distributed medicinal tree with proven insecticidal, antimicrobial, and antiviral activity. The aim of this study was to isolate and characterize endophytic bacteria from M. azedarach and analyze their plant growth promoting activities for the potential application as biological products. Bacteria were isolated from roots and leaves of trees growing in two locations of Northeastern Argentina. The isolates were characterized by repetitive extragenic palindromic sequence PCR and 16S rDNA sequence analysis. The plant growth-promoting activities were assayed in vitro, improvement of plant growth of selected isolates was tested on M. azedarach plantlets, and the effect of selected ACC deaminase producing isolates was tested on tomato seedlings under salt-stress conditions. The highest endophytic bacterial abundance and diversity were obtained from the roots. All isolates had at least one of the assayed plant growth-promoting activities and 80 % of them had antagonistic activity. The most efficient bacteria were Pseudomonas monteilii, Pseudomonas farsensis, Burkholderia sp. and Cupriavidus sp. for phosphate solubilization (2064 µg P ml-1), IAA production (94.7 µg ml-1), siderophore production index (5.5) and ACC deaminase activity (1294 nmol α-ketobutyrate mg-1 h-1). M. azedarach inoculation assays revealed the bacterial growth promotion potential, with Pseudomonas monteilii, Pseudomonas farsensis and Cupriavidus sp. standing out for their effect on leaf area, leaf dry weight, specific leaf area, and total Chl, Mg and N content, with increases of up to 149 %, 58 %, 65 %, 178 %, 76 % and 97.7 %, respectively, compared to NI plants. Efficient ACC deaminase-producing isolates increased stress tolerance of tomato plants under saline condition. Overall, these findings indicate the potential of the endophytic isolates as biostimulant and biocontrol agents.

8.
Fungal Syst Evol ; 13: 131-142, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39129969

RESUMEN

Members of the Botryosphaeriaceae are well-known endophytes and stress-related pathogens. We recently characterised the diversity of Botryosphaeriaceae in healthy tissues of three tree species in the Anacardiaceae, namely Sclerocarya birrea, Mangifera indica and Lannea schweinfurthii. Here we ask how that diversity compares with the Botryosphaeriaceae diversity associated with dieback on those tree species. Samples were collected from agroecosystems (Tshikundamalema and Tshipise in Limpopo) and conservation areas (Nwanedi and the Mapungubwe National Park in Limpopo and the Kruger National Park in Mpumalanga) ecosystems. Species were characterised using multigene sequence data and morphological data. Diplodia allocellula, Dothiorella brevicollis, Do. viticola, Lasiodiplodia crassispora, L. mahajangana and Neofusicoccum parvum occurred on both asymptomatic and symptomatic samples. Dothiorella dulcispinea, L. gonubiensis and L. exigua, as well as a previously unknown species described here as Oblongocollomyces ednahkunjekuae sp. nov, only occurred in asymptomatic branches. An interesting aspect of the biology of O. ednahkunjekuaeae is that it appears to be adapted to higher temperatures, with an optimum growth at 30 °C, and faster growth at 35 °C than at 25 °C. Lasiodiplodia pseudotheobromae only occurred in symptomatic branches. Neofusicoccum parvum was notably absent from conservation areas, and in agroecosystem it was most common on M. indica. Only L. crassispora and L. mahajangana overlapped on all three tree species and were the dominant species associated with dieback. These results show that not all Botryosphaeriaceae occurring asymptomatically in an area contribute equally to disease development on a related group of hosts, and that environmental disturbance plays a significant role in the distribution of N. parvum. Citation: Slippers B, Ramabulana E, Coetzee MPA (2024). Botryosphaeriaceae partially overlap on asymptomatic and symptomatic tissues of Anacardiaceae in agroecosystems and conservation areas in northern South Africa. Fungal Systematics and Evolution 13: 131-142. doi: 10.3114/fuse.2024.13.07.

9.
Plants (Basel) ; 13(16)2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39204654

RESUMEN

Living in diverse environmentally harsh conditions, the plant exhibits a unique survival mechanism. As a result, the endophytes residing within the plant produce specific compounds that promote the plant's growth and defend it against pathogens. Plants and algae symbiotically harbor endophytes, i.e., microbes and microorganisms living within them. The objective of this study is to isolate endophytic fungi, specifically strains of Aspergillus terreus, from the leaves of the salt-tolerant plant Tetraena qatarensis and to explore the salt tolerance, antagonistic activity, and growth promotion properties. Strain C A. terreus (ON117337.1) was screened for salt tolerance and antagonistic effects. Regarding salt tolerance, the isolate demonstrated the ability to thrive in a concentration of up to 10% NaCl. A. terreus showed inhibitory activity against four fungal phytopathogens, namely Fusarium oxysporum, Alternaria alternata, Colletotrichum gloeosporioides, and Botrytis cinerea. The GC-MS investigation of the fungal (strain C Aspergillus terreus) extract showed the presence of about 66 compounds (secondary metabolites). Secondary metabolites (SMs) are produced, like Hexadecanoic acid, which aids in controlling phytopathogens. Also produced is lovastatin, which is used to treat hypercholesterolemia. Strain C, which showed salinity tolerance and the highest inhibitory activity, was further analyzed for its effect on tomato seed germination under pathogen stress from Fusarium oxysporum. The greenhouse experiment indicated that the fungi increased the length of tomato seedlings and the plant biomass. Therefore, the selected endophytes derived from Tetraena qatarensis were scrutinized for their potential as biocontrol agents, aiming to thwart fungal pathogens and stimulate plant growth. The in vitro and in vivo assessments of strain C (Aspergillus terreus) against Fusarium oxysporum in this investigation indicate the promising role of endophytes as effective biological control agents. Investigating novel bio-products offers a sustainable approach to agriculture, gradually reducing dependence on chemical fungicides.

10.
Artículo en Inglés | MEDLINE | ID: mdl-39212636

RESUMEN

Three novel mycelium-forming actinobacteria, designated OC33-EN06T, OC33-EN07T, and OC33-EN08T, were isolated from wild orchid (Aerides multiflora Roxb), collected from a hill evergreen forest in Northern Thailand. Strains OC33-EN06T and OC33-EN07T showed the highest 16S rRNA gene similarity with Actinomycetospora lutea TT00-04T, 99.17 and 99.45%, respectively. Strain OC33-EN08T showed high similarity with four species, namely 'Actinomycetospora termitidis Odt1-22T' (99.37%), Actinomycetospora chiangmaiensis DSM 45062T (99.02%), Actinomycetospora corticicola 014-5T (99.02%), and Actinomycetospora soli SF1T (98.81%). Comparative genome analysis of OC33-EN06T, OC33-EN07T, and OC33-EN08T with the closely related type strains showed that average nucleotide identity (ANI) based on blast, ANI based on MUMmer, and average amino acid identity values were less than 95% and the digital DNA-DNA hybridization values were less than 70%, all below the thresholds for species demarcation. The digital G+C content of OC33-EN06T, OC33-EN07T, and OC33-EN08T were 74.5, 74, and 74 mol%, respectively. These three strains developed bud-like chains of non-motile cylindrical spores with a smooth surface. The cell-wall peptidoglycan contained meso-diaminopimelic acid. The whole-cell sugars contained ribose, arabinose, and galactose. The predominant menaquinone was MK-8(H4). The phospholipid profile included phosphatidylcholine, phosphatidylethanolamine, phosphatidylmethylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, and phosphatidylinositol. Based on comparative analysis of genotypic, phenotypic and chemotaxonomic data, strains OC33-EN06T (=TBRC 18349T=NBRC 116543T), OC33-EN07T (=TBRC 18350T=NBRC 116544T), and OC33-EN08T (=TBRC 18318T=NBRC 116542T) represent the type strains of three novel species of the genus Actinomycetospora for which the names Actinomycetospora aeridis sp. nov., Actinomycetospora flava sp. nov., and Actinomycetospora aurantiaca sp. nov., are proposed.


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Orchidaceae , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , ARN Ribosómico 16S/genética , Tailandia , Ácidos Grasos/análisis , Ácidos Grasos/química , ADN Bacteriano/genética , Orchidaceae/microbiología , Hibridación de Ácido Nucleico , Endófitos/clasificación , Endófitos/aislamiento & purificación , Endófitos/genética , Actinomycetales/aislamiento & purificación , Actinomycetales/clasificación , Actinomycetales/genética , Peptidoglicano , Bosques , Vitamina K 2/análogos & derivados , Vitamina K 2/análisis , Micelio
11.
J Basic Microbiol ; 64(8): e2400080, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39031570

RESUMEN

Phellinus caribaeo-quercicola is a basidiomycetous fungus, isolated as an endophyte in this study from the healthy and symptomless leaves of Inula racemosa Hook. f., an important medicinal herb growing in Kashmir Himalaya. This study combines morphological, molecular and phylogenetic techniques to identify the fungal endophyte, using the ITS sequence of nrDNA. A detached leaf assay was conducted to assess the pathogenicity of the fungal endophyte suggesting its mutually symbiotic relationship with the host. The authors also investigated the antifungal potential of the isolated endophytic strain to ascertain its use as a biocontrol agent. The study shows that P. caribaeo-quercicola INL3-2 strain exhibits biocontrol activity against four key fungal phytopathogens that cause significant agronomic and economic losses: Aspergillus flavus, Aspergillus niger, Fusarium solani, and Fusarium oxysporum. Notably, P. caribaeo-quercicola INL3-2 strain is highly effective against A. flavus, with an inhibition percentage of 57.63%. In addition, this study investigates the antioxidant activity of P. caribaeo-quercicola INL3-2 strain crude extracts using ethyl acetate and methanol as solvents. The results showed that the methanolic fraction of P. caribaeo-quercicola exhibits potential as an antioxidant agent, with an IC50 value of 171.90 ± 1.15 µg/mL. This investigation is first of its kind and marks the initial report of this fungal basidiomycete, P. caribaeo-quercicola, as an endophyte associated with a medicinal plant. The findings of this study highlight the potential of P. caribaeo-quercicola INL3-2 strain as a dual-action agent with both biocontrol and antioxidant properties consistent with the medicinal properties of Inula racemosa. This endophytic fungus could be a promising source of natural compounds for use in agriculture, medicine, and beyond.


Asunto(s)
Antifúngicos , Antioxidantes , Basidiomycota , Endófitos , Filogenia , Hojas de la Planta , Endófitos/aislamiento & purificación , Endófitos/metabolismo , Endófitos/fisiología , Endófitos/genética , Antioxidantes/farmacología , Antioxidantes/metabolismo , Basidiomycota/efectos de los fármacos , Hojas de la Planta/microbiología , Antifúngicos/farmacología , Antifúngicos/metabolismo , Fusarium/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Agentes de Control Biológico/farmacología , Aspergillus/metabolismo , Aspergillus/efectos de los fármacos , India , Aspergillus flavus/efectos de los fármacos , Aspergillus flavus/metabolismo , Aspergillus flavus/crecimiento & desarrollo , ADN de Hongos/genética , Simbiosis
12.
World J Microbiol Biotechnol ; 40(9): 278, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046545

RESUMEN

This study investigates the synthesis of vinblastine by endophytic fungi isolated from leaf of C. roseus. A total of 10 endophytic fungi were selected for secretion of vinca alkaloids based on the initial screening by biochemical tests and thin-layer chromatography (TLC). Out of these ten, only four fungal extracts showed positive results for presence of vinblastine at same retention time (10 min.) compared to reference compound on HPLC analysis. The detected concentration of vinblastine was maximum (17 µg/ml) in isolate no. CRL 22 followed by CRL 52, CRL 17 and CRL 28. To validate the presence of vinblastine, ultra-high-performance liquid chromatography coupled with high-resolution accurate mass spectrometry (HRMS) was employed. This analysis confirmed the presence of anhydrovinblastine, a precursor of vinblastine through the detection of molecular ions at m/z 793.4185 in extract of CRL 17. In addition to anhydrovinblastine, the intermediate compounds essential to the biosynthetic pathway of vinblastine were also detected in the extract of CRL 17. These host-origin compounds strongly suggest the presence of a biosynthetic pathway within the endophytic fungus. Based on morphological observation and sequence analysis of the ITS region of rDNA, endophytic fungi were identified as Alternaria alternata (CRL 17), Curvularia lunata (CRL 28), Aspergillus terrus (CRL 52), and Aspergillus clavatonanicus (CRL 22).


Asunto(s)
Catharanthus , Endófitos , Hongos , Hojas de la Planta , Vinblastina , Catharanthus/microbiología , Vinblastina/metabolismo , Endófitos/metabolismo , Endófitos/aislamiento & purificación , Cromatografía Líquida de Alta Presión , Hongos/metabolismo , Hongos/aislamiento & purificación , Hongos/clasificación , Hongos/genética , Hojas de la Planta/microbiología , Cromatografía en Capa Delgada , Vías Biosintéticas , Espectrometría de Masas
13.
J Appl Microbiol ; 135(8)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39066495

RESUMEN

AIMS: This study aimed to evaluate the potential of endophytic plant growth-promoting bacterium (PGPB), Pseudomonas putida A32, to mitigate drought stress in two bell pepper genotypes, Amfora 19 and Amfora 26, and to assess the genotype-specific responses to bacterial treatment. METHODS AND RESULTS: The isolate P. putida A32 was selected for its remarkable beneficial properties, exhibiting 13 out of 14 traits tested. Under drought conditions, Amfora 26 showed increased relative water content and decreased H2O2 and malondialdehyde following bacterial treatment, while Amfora 19 exhibited enhanced growth parameters but responded less to bacterial treatment regarding drought parameters. However, Amfora 19 displayed inherent drought tolerance mechanisms, as indicated by lower stress parameters compared to Amfora 26. CONCLUSIONS: The study emphasizes the importance of genotype-specific responses to PGPB treatment and the mechanisms of drought tolerance in peppers. Pseudomonas putida A32 effectively mitigated drought stress in both genotypes, with differential responses influenced by plant genotype. Our study confirmed our initial hypothesis that Amfora 19, as a genotype tolerant to biotic stress, is also more tolerant to abiotic stress. Understanding these interactions is crucial for the development of customized strategies to improve plant productivity and tolerance to drought.


Asunto(s)
Capsicum , Sequías , Genotipo , Pseudomonas putida , Estrés Fisiológico , Pseudomonas putida/genética , Pseudomonas putida/fisiología , Capsicum/microbiología , Capsicum/genética , Endófitos/genética , Endófitos/fisiología , Peróxido de Hidrógeno/metabolismo , Malondialdehído/metabolismo
14.
New Phytol ; 243(5): 1899-1916, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38946157

RESUMEN

Fusarium diseases pose a severe global threat to major cereal crops, particularly wheat. Existing biocontrol strains against Fusarium diseases are believed to primarily rely on antagonistic mechanisms, but not widely used under field conditions. Here, we report an endophytic fungus, Purpureocillium lilacinum YZ1, that shows promise in combating wheat Fusarium diseases. Under glasshouse conditions, YZ1 inoculation increased the survival rate of Fusarium graminearum (Fg)-infected wheat seedlings from 0% to > 60% at the seedling stage, and reduced spikelet infections by 70.8% during anthesis. In field trials, the application of YZ1 resulted in an impressive 89.0% reduction in Fg-susceptible spikelets. While a slight antagonistic effect of YZ1 against Fg was observed on plates, the induction of wheat systemic resistance by YZ1, which is distantly effective, non-specific, and long-lasting, appeared to be a key contributor to YZ1's biocontrol capabilities. Utilizing three imaging methods, we confirmed YZ1 as a potent endophyte capable of rapid colonization of wheat roots, and systematically spreading to the stem and leaves. Integrating dual RNA-Seq, photosynthesis measurements and cell wall visualization supported the link between YZ1's growth-promoting abilities and the activation of wheat systemic resistance. In conclusion, endophytes such as YZ1, which exhibits non-antagonistic mechanisms, hold significant potential for industrial-scale biocontrol applications.


Asunto(s)
Resistencia a la Enfermedad , Endófitos , Fusarium , Enfermedades de las Plantas , Triticum , Fusarium/fisiología , Fusarium/patogenicidad , Triticum/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Endófitos/fisiología , Hypocreales/fisiología , Hypocreales/patogenicidad , Raíces de Plantas/microbiología , Plantones/microbiología , Regulación de la Expresión Génica de las Plantas
15.
J Food Prot ; 87(9): 100330, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39025261

RESUMEN

Listeria monocytogenes and Cronobacter sakazakii are two important foodborne bacterial pathogens. Bacterial endophytes, which reside in plant cells, can produce antimicrobial compounds to protect the host organism or inhibit pathogens. This study investigated the bacterial community of tropical fruits for their potential to inactivate L. monocytogenes or C. sakazakii in cantaloupe and liquid infant formula, respectively. Tropical fruits including papayas, dragon fruits, and sugar apples, were sourced from several countries. Candidate bacterial endophytes were recovered from these tropical fruits using blood agar and Reasoner's 2A (R2A) agar and tested for potential inhibition against L. monocytogenes and C. sakazakii. A total of 196 bacterial endophytes were recovered from papayas, dragon fruits, and sugar apples. Among these bacterial endophytes, 33 (16.8%) and 13 (6.6%) of them demonstrated an inhibition zone against L. monocytogenes and C. sakazakii, respectively. The inhibitory strains were identified using 16S rRNA sequencing as Bacillus spp., Enterobacter spp., Klebsiella spp., Microbacterium spp., Pantoea spp., and Pseudomonas spp. A cocktail of Pantoea spp. and Enterobacter spp. was used in challenge studies with cantaloupe and significantly reduced the number of L. monocytogenes by approximately 2.5 log10 CFU/g. In addition, P. stewartii demonstrated antagonistic activity against C. sakazakii in liquid infant formula, i.e., it significantly decreased the number of C. sakazakii by at least 1 log10 CFU/mL. Thus, the use of bacterial endophytes recovered from fruits and vegetables could be a promising area of research. Their use as potential biocontrol agents to control bacterial pathogens in ready-to-eat foods warrants further investigation.


Asunto(s)
Cronobacter sakazakii , Endófitos , Microbiología de Alimentos , Frutas , Listeria monocytogenes , Frutas/microbiología , Humanos , ARN Ribosómico 16S
16.
Nat Prod Res ; : 1-11, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39049511

RESUMEN

The endophytic fungi, Epicoccum sorghinum AMFS4 was investigated for its metabolic components and composition of bioactive exopolysaccharides (EPS). Metabolic analysis of the ethyl acetate extract majorly detected sugars derivatives such as, 4-Cholesten-3-one semicarbazone (20.9%), d-Fructose (18.96%), and α-d-Galactopyranosiduronicacid (1.71%). The growth curve and EPS yield were determined as 12.22 ± 1.02 g/L and 7.41 ± 0.32 g/L (dry weight) respectively on day 8. The deproteined EPS has been characterised with pyranose ring linked by α-glycosidic bonds, composing fructose, galactose and glucose monosaccharides validated by HPLC. Total sugar content was found to be 93.18 ± 0.81% with detection of proteins and uronate. The viscous EPS appeared filamentous under SEM observation and behaves as emulsifier with notable antioxidant properties. Priming of EPS on tomato seeds showed early induction of secondary rooting than in the control seedlings. Thus, E. sorghinum AMFS4 synthesises bioactive EPS with simple carbohydrate structure, good water absorption and significant metabolic influence on seed germination.

17.
Insects ; 15(7)2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39057267

RESUMEN

Endophytes, prevalent in plants, mediate plant-insect interactions. Nevertheless, our understanding of the key members of endophyte communities involved in inhibiting or assisting EAB infestation remains limited. Employing ITS and 16S rRNA high-throughput sequencing, along with network analysis techniques, we conducted a comprehensive investigation into the reaction of endophytic fungi and bacteria within F. bungeana phloem by comparing EAB-infested and uninfected samples. Our findings reveal that EAB infestation significantly impacts the endophytic communities, altering both their diversity and overall structure. Interestingly, both endophytic fungi and bacteria exhibited distinct patterns in response to the infestation. For instance, in the EAB-infested phloem, the fungi abundance remained unchanged, but diversity decreased significantly. Conversely, bacterial abundance increased, without significant diversity changes. The fungi community structure altered significantly, which was not observed in bacteria. The bacterial composition in the infested phloem underwent significant changes, characterized by a substantial decrease in beneficial species abundance, whereas the fungal composition remained largely unaffected. In network analysis, the endophytes in infested phloem exhibited a modular topology, demonstrating greater complexity due to an augmented number of network nodes, elevated negative correlations, and a core genera shift compared to those observed in healthy phloem. Our findings increase understanding of plant-insect-microorganism relationships, crucial for pest control, considering endophytic roles in plant defense.

18.
J Fungi (Basel) ; 10(7)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39057377

RESUMEN

Astragalus membranaceus is a famous traditional medicinal plant. However, drought and cadmium (Cd) pollution are the main abiotic stress factors that affect plant growth and yield and the ability to improve the host's stress resistance through the use of beneficial endophytic fungi. To evaluate the tolerance of dark septate endophytes (DSE) to various abiotic stresses, 10 DSE strains [Microsphaeropsis cytisi (Mc), Alternaria alstroemeriae (Aa), Stagonosporopsis lupini (Sl), Neocamarosporium phragmitis (Np), Paraphoma chlamydocopiosa (Pc), Macrophomina phaseolina (Mp'), Papulaspora equi (Pe), Alternaria tellustris (At), Macrophomina pseudophaseolina (Mp), and Paraphoma radicina (Pr)] were investigated under different drought and Cd stressors in vitro by using solid-plate cultures and liquid-shaker cultures in the current study. The experiments involved using varying concentrations of PEG (0, 9, 18, and 27%) and Cd2+ (0, 25, 50, and 100 mg/L) to simulate different stress conditions on DSE. Additionally, the effect of DSE (Np and At) on the growth of A. membranaceus at different field water capacities (70% and 40%) and at different CdCl2 concentrations (0, 5, 10, and 15 mg Cd/kg) in soil was studied. The results demonstrated that the colony growth rates of Aa, Np, Pc, Mp', and Mp were the first to reach the maximum diameter at a PEG concentration of 18%. Aa, Np, and At remained growth-active at 100 mg Cd/L. In addition, Aa, Np, and At were selected for drought and Cd stress tests. The results of the drought-combined-with-Cd-stress solid culture indicated that the growth rate of Np was significantly superior to that of the other strains. In the liquid culture condition, the biomasses of Np and Aa were the highest, with biomasses of 1.39 g and 1.23 g under the concentration of 18% + 25 mg Cd/L, and At had the highest biomass of 1.71 g at 18% + 50 mg Cd/L concentration, respectively. The CAT and POD activities of Np reached their peak levels at concentrations of 27% + 50 mg Cd/L and 27% + 25 mg Cd/L, respectively. Compared to the control, these levels indicated increases of 416.97% and 573.12%, respectively. Aa, Np, and At positively influenced SOD activity. The glutathione (GSH) contents of Aa, Np, and At were increased under different combined stressors of drought and Cd. The structural-equation-modeling (SEM) analysis revealed that Aa positively influenced biomass and negatively affected Cd content, while Np and At positively influenced Cd content. Under the stress of 40% field-water capacity and the synergistic stress of 40% field-water capacity and 5 mg Cd/kg soil, Np and At significantly increased root weight of A. membranaceus. This study provides guidance for the establishment of agricultural planting systems and has good development and utilization value.

19.
Pest Manag Sci ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046187

RESUMEN

Entomopathogenic fungi capable of establishing mutualistic endophytic relationships with plants have a tremendous potential as biocontrol agents of insect pests. While fungi have long played an important and highly effective role in pest suppression, the utility of endophytic entomopathogenic fungi in pest management is a relatively new and emerging topic of biocontrol. Here we discuss the relevance of endophytic fungi to plant health in general, synthesize the current knowledge of the effectiveness of endophytic entomopathogenic fungi against diverse insect pests, discuss the indirect plant-mediated effects of endophytic entomopathogenic fungi on arthropods, and describe the diverse benefits of endophytic fungi to plants that are likely to affect herbivores and plant pathogens as well. Lastly, we consider major challenges to incorporating endophytic entomopathogenic fungi in biocontrol, such as their non-target effects and field efficacy, which can be variable and influenced by environmental factors. Continued research on endophyte-insect-plant-environment interactions is critical to advancing our knowledge of these fungi as a sustainable pest management tactic. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

20.
BMC Microbiol ; 24(1): 255, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982358

RESUMEN

BACKGROUND: Alternaria alternata is the primary pathogen of potato leaf spot disease, resulting in significant potato yield losses globally. Endophytic microorganism-based biological control, especially using microorganisms from host plants, has emerged as a promising and eco-friendly approach for managing plant diseases. Therefore, this study aimed to isolate, identify and characterize the endophytic fungi from healthy potato leaves which had great antifungal activity to the potato leaf spot pathogen of A. alternata in vitro and in vivo. RESULTS: An endophytic fungal strain SD1-4 was isolated from healthy potato leaves and was identified as Talaromyces muroii through morphological and sequencing analysis. The strain SD1-4 exhibited potent antifungal activity against the potato leaf spot pathogen A. alternata Lill, with a hyphal inhibition rate of 69.19%. Microscopic and scanning electron microscope observations revealed that the strain SD1-4 grew parallel to, coiled around, shrunk and deformed the mycelia of A. alternata Lill. Additionally, the enzyme activities of chitinase and ß-1, 3-glucanase significantly increased in the hyphae of A. alternata Lill when co-cultured with the strain SD1-4, indicating severe impairment of the cell wall function of A. alternata Lill. Furthermore, the mycelial growth and conidial germination of A. alternata Lill were significantly suppressed by the aseptic filtrate of the strain SD1-4, with inhibition rates of 79.00% and 80.67%, respectively. Decrease of leaf spot disease index from 78.36 to 37.03 was also observed in potato plants treated with the strain SD1-4, along with the significantly increased plant growth characters including plant height, root length, fresh weight, dry weight, chlorophyll content and photosynthetic rate of potato seedlings. CONCLUSION: The endophyte fungus of T. muroii SD1-4 isolated from healthy potato leaves in the present study showed high biocontrol potential against potato leaf spot disease caused by A. alternata via direct parasitism or antifungal metabolites, and had positive roles in promoting potato plant growth.


Asunto(s)
Alternaria , Endófitos , Enfermedades de las Plantas , Hojas de la Planta , Solanum tuberosum , Talaromyces , Alternaria/crecimiento & desarrollo , Alternaria/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Solanum tuberosum/microbiología , Talaromyces/genética , Talaromyces/crecimiento & desarrollo , Endófitos/fisiología , Endófitos/aislamiento & purificación , Endófitos/genética , Hojas de la Planta/microbiología , Hifa/crecimiento & desarrollo , Antibiosis , Quitinasas/metabolismo , Agentes de Control Biológico , Control Biológico de Vectores/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA