Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
1.
J Biol Chem ; 300(7): 107457, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38866324

RESUMEN

AT-rich interacting domain (ARID)-containing proteins, Arids, are a heterogeneous DNA-binding protein family involved in transcription regulation and chromatin processing. For the member Arid5a, no exact DNA-binding preference has been experimentally defined so far. Additionally, the protein binds to mRNA motifs for transcript stabilization, supposedly through the DNA-binding ARID domain. To date, however, no unbiased RNA motif definition and clear dissection of nucleic acid-binding through the ARID domain have been undertaken. Using NMR-centered biochemistry, we here define the Arid5a DNA preference. Further, high-throughput in vitro binding reveals a consensus RNA-binding motif engaged by the core ARID domain. Finally, transcriptome-wide binding (iCLIP2) reveals that Arid5a has a weak preference for (A)U-rich regions in pre-mRNA transcripts of factors related to RNA processing. We find that the intrinsically disordered regions flanking the ARID domain modulate the specificity and affinity of DNA binding, while they appear crucial for RNA interactions. Ultimately, our data suggest that Arid5a uses its extended ARID domain for bifunctional gene regulation and that the involvement of IDR extensions is a more general feature of Arids in interacting with different nucleic acids at the chromatin-mRNA interface.


Asunto(s)
Proteínas de Unión al ADN , ADN , Factores de Transcripción , Humanos , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/química , ADN/metabolismo , ADN/química , ADN/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/química , Dominios Proteicos , Regulación de la Expresión Génica , Unión Proteica , ARN Mensajero/metabolismo , ARN Mensajero/genética , ARN/metabolismo , ARN/química , ARN/genética
2.
Methods Mol Biol ; 2813: 309-320, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38888786

RESUMEN

Nanoparticle carriers enable the multivalent delivery of nucleic acids to cells and protect them from degradation. In this chapter, we present a comprehensive overview of four methodologies: electrophoretic mobility shift assay (EMSA), alamarBlue/CFDA-AM cell viability dyes, fluorescence microscopy, and antiviral assays, which collectively are tools to explore interactions between nucleic acids and nanoparticles, and their biological efficacy. These assays provide insights into binding potential, cytotoxicity, and antiviral efficacy of nucleic acid-based nanoparticle treatments furthering the development of effective antiviral therapeutics.


Asunto(s)
Antivirales , Nanopartículas , Ácidos Nucleicos , Nanopartículas/química , Antivirales/farmacología , Humanos , Ácidos Nucleicos/química , Ensayo de Cambio de Movilidad Electroforética/métodos , Cationes/química , Supervivencia Celular/efectos de los fármacos , Microscopía Fluorescente , Portadores de Fármacos/química , Animales
3.
Methods Mol Biol ; 2795: 135-147, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38594535

RESUMEN

Electrophoretic mobility shift assays (EMSAs) of DNA-binding proteins and labeled DNA allow the qualitative and quantitative characterization of protein-DNA complex formation using native (nondenaturing) polyacrylamide or agarose gel electrophoresis. By varying the incubation temperature of the protein-DNA binding reaction and maintaining this temperature during electrophoresis, temperature-dependent protein-DNA interactions can be investigated. Here, we provide examples of the binding of a transcriptional repressor complex called the Evening Complex, comprising the DNA-binding protein LUX ARRYTHMO (LUX), the scaffold protein EARLY FLOWERING 3 (ELF3), and the adapter protein ELF4, to its cognate DNA and demonstrate direct detection and visualization of thermoresponsive binding in vitro. As negative controls we use the LUX DNA-binding domain and LUX full length protein, which do not exhibit temperature-dependent DNA binding.


Asunto(s)
Proteínas de Unión al ADN , ADN , Ensayo de Cambio de Movilidad Electroforética , Temperatura , Proteínas de Unión al ADN/metabolismo , Unión Proteica , ADN/química , Electroforesis en Gel de Poliacrilamida
4.
Pest Manag Sci ; 80(6): 3035-3046, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38323683

RESUMEN

BACKGROUND: Glutathione transferases (GSTs) are enzymes with a wide range of functions, including herbicide detoxification. Up-regulation of GSTs and their detoxification activity enables the grass weed black-grass (Alopecurus myosuroides Huds.) to metabolize the very-long-chain fatty acid synthesis inhibitor flufenacet and other herbicides leading to multiple herbicide resistance. However, the genomic organization and regulation of GSTs genes is still poorly understood. RESULTS: In this genome-wide study the location and expression of 115 GSTs were investigated using a recently published black-grass genome. Particularly, the most abundant GSTs of class tau and phi were typically clustered and often followed similar expression patterns but possessed divergent upstream regulatory regions. Similarities were found in the promoters of the most up-regulated GSTs, which are located next to each other in a cluster. The binding motif of the E2F/DP transcription factor complex in the promoter of an up-regulated GST was identical in susceptible and resistant plants, however, adjacent sequences differed. This led to a stronger binding of proteins to the motif of the susceptible plant, indicating repressor activity. CONCLUSIONS: This study constitutes the first analysis dealing with the genomic investigation of GST genes found in black-grass and their transcriptional regulation. It highlights the complexity of the evolution of GSTs in black-grass, their duplication and divergence over time. The large number of GSTs allows weeds to detoxify a broad spectrum of herbicides. Ultimately, more research is needed to fully elucidate the regulatory mechanisms of GST expression. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Acetamidas , Regulación de la Expresión Génica de las Plantas , Glutatión Transferasa , Resistencia a los Herbicidas , Herbicidas , Poaceae , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Resistencia a los Herbicidas/genética , Poaceae/genética , Poaceae/enzimología , Herbicidas/farmacología , Acetamidas/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Estudio de Asociación del Genoma Completo , Tiadiazoles
5.
Methods Mol Biol ; 2741: 195-206, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38217655

RESUMEN

Regulatory RNAs in bacteria are known to act by base pairing with other RNAs. Interactions between two partner RNAs can be investigated by electrophoretic mobility shift assays. The regions predicted to be engaged in base pairing are analyzed by introducing mutations in one RNA that prevent RNA-RNA complex formation. Next, base pairing is restored by introducing complementary mutations in its partner RNA. Here, we describe the mutational strategy and experimental methods used to validate specific base pairing between two RNA species.


Asunto(s)
Bacterias , ARN , ARN/genética , Ensayo de Cambio de Movilidad Electroforética , Emparejamiento Base , Mutación , Bacterias/genética
6.
J Struct Biol ; 215(4): 108034, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37805153

RESUMEN

Transcription is carried out by the RNA polymerase and is regulated through a series of interactions with transcription factors. Catabolite activator repressor (Cra), a LacI family transcription factor regulates the virulence gene expression in Enterohaemorrhagic Escherichia coli (EHEC) and thus is a promising drug target for the discovery of antivirulence molecules. Here, we report the crystal structure of the effector molecule binding domain of Cra from E. coli (EcCra) in complex with HEPES molecule. Based on the EcCra-HEPES complex structure, ligand screening was performed that identified sulisobenzone as an potential inhibitor of EcCra. The electrophoretic mobility shift assay (EMSA) and in vitro transcription assay validated the sulisobenzone binding to EcCra. Moreover, the isothermal titration calorimetry (ITC) experiments demonstrated a 40-fold higher binding affinity of sulisobenzone (KD 360 nM) compared to the HEPES molecule. Finally, the sulisobenzone bound EcCra complex crystal structure was determined to elucidate the binding mechanism of sulisobenzone to the effector binding pocket of EcCra. Together, this study suggests that sulisobenzone may be a promising candidate that can be studied and developed as an effective antivirulence agent against EHEC.


Asunto(s)
Escherichia coli , Factores de Transcripción , Factores de Transcripción/metabolismo , Escherichia coli/metabolismo , Proteínas Represoras/genética , HEPES/metabolismo , Regulación Bacteriana de la Expresión Génica , Unión Proteica
7.
Methods Mol Biol ; 2695: 89-110, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37450113

RESUMEN

Proteins participate in many processes of the organism and are very important for maintaining the health of the organism. However, proteins cannot function independently in the body. They must interact with proteins, DNA, RNA, and other substances to perform biological functions and maintain the body's health. At present, there are many experimental methods and software tools that can detect and predict the interaction between proteins and other substances. There are also many databases that record the interaction between proteins and other substances. This article mainly describes protein-protein, protein-DNA, and protein-RNA interactions in detail by introducing some commonly used experimental methods, the software tools produced with the accumulation of experimental data and the rapid development of machine learning, and the related databases that record the relationship between proteins and some substances. By this review, we hope that through the analysis and summary of various aspects, it will be convenient for researchers to conduct further research on protein interactions.


Asunto(s)
Proteínas , ARN , ARN/genética , ARN/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Proteínas/genética , ADN/genética , ADN/metabolismo , Programas Informáticos
8.
Int J Biol Macromol ; 248: 125885, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37473881

RESUMEN

DR0041 ORF encodes an uncharacterized Deinococcus lineage protein. We earlier reported presence of DR0041 protein in DNA repair complexes of Ssb and RecA in Deinococcus radiodurans. Here, we systematically examined the role of DR0041 in DNA metabolism using various experimental methodologies including electrophoretic mobility assays, nuclease assays, strand exchange assays and transmission electron microscopy. Interaction between DR0041 and the C-terminal acidic tail of Ssb was assessed through co-expression and in vivo cross-linking studies. A knockout mutant was constructed to understand importance of DR0041 ORF for various physiological processes. Results highlight binding of DR0041 protein to single-stranded and double-stranded DNA, interaction with Ssb-coated single-stranded DNA without interference with RecA-mediated strand exchange, protection of DNA from exonucleases, and compaction of high molecular weight DNA molecules into tightly condensed forms. Bridging and compaction of sheared DNA by DR0041 protein might have implications in the preservation of damaged DNA templates to maintain genome integrity upon exposure to gamma irradiation. Our results suggest that DR0041 protein is dispensable for growth under standard growth conditions and following gamma irradiation but contributes to protection of DNA during transformation. We discuss the role of DR0041 protein from the perspective of protection of broken DNA templates and functional redundancy.


Asunto(s)
Deinococcus , Deinococcus/genética , Deinococcus/efectos de la radiación , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , ADN/metabolismo , Reparación del ADN , ADN de Cadena Simple/metabolismo , Proteínas Bacterianas/química
9.
Mol Microbiol ; 2023 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-37424153

RESUMEN

It is interesting to identify factors involved in the regulation of the encystation of Entamoeba histolytica that differentiate trophozoites into cysts. Evolutionarily conserved three amino acid loop extension (TALE) homeodomain proteins act as transcription factors and execute a variety of functions that are essential for life. A TALE homeodomain (EhHbox) protein-encoding gene has been identified in E. histolytica (Eh) that is highly upregulated during heat shock, glucose, and serum starvation. Its ortholog, EiHbox1, a putative homeobox protein in E. invadens (Ei), is also highly upregulated during the early hours of encystation, glucose starvation, and heat shock. They belong to the PBX family of TALE homeobox proteins and have conserved residues in the homeodomain that are essential for DNA binding. Both are localized in the nucleus during encystation and under different stress conditions. The electrophoretic mobility shift assay confirmed that the recombinant GST-EhHbox binds to the reported TGACAG and TGATTGAT motifs. Down-regulation of EiHbox1 by gene silencing reduced Chitin synthase, Jacob, and increased Jessie gene expression, resulting in defective cysts and decreased encystation efficiency and viability. Overall, our results suggest that the TALE homeobox family has been conserved during evolution and acts as a transcription factor to control the differentiation of Entamoeba by regulating the key encystation-induced genes.

10.
Mol Microbiol ; 120(2): 224-240, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37387308

RESUMEN

The haloarchaeon Haloferax volcanii degrades D-glucose via the semiphosphorylative Entner-Doudoroff pathway and D-fructose via a modified Embden-Meyerhof pathway. Here, we report the identification of GfcR, a novel type of transcriptional regulator that functions as an activator of both D-glucose and D-fructose catabolism. We find that in the presence of D-glucose, GfcR activates gluconate dehydratase, glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase and also acts as activator of the phosphotransferase system and of fructose-1,6-bisphosphate aldolase, which are involved in uptake and degradation of D-fructose. In addition, glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase are activated by GfcR in the presence of D-fructose and also during growth on D-galactose and glycerol. Electrophoretic mobility shift assays indicate that GfcR binds directly to promoters of regulated genes. Specific intermediates of the degradation pathways of the three hexoses and of glycerol were identified as inducer molecules of GfcR. GfcR is composed of a phosphoribosyltransferase (PRT) domain with an N-terminal helix-turn-helix motif and thus shows homology to PurR of Gram-positive bacteria that is involved in the transcriptional regulation of nucleotide biosynthesis. We propose that GfcR of H. volcanii evolved from a PRT-like enzyme to attain a function as a transcriptional regulator of central sugar catabolic pathways in archaea.


Asunto(s)
Archaea , Piruvato Quinasa , Archaea/metabolismo , Glicerol , Glucosa/metabolismo , Fructosa/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo
11.
Int J Mol Sci ; 24(9)2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37175914

RESUMEN

High NaCl (200 mM) increases the transcription of phospholipase Dδ (PLDδ) in roots and leaves of the salt-resistant woody species Populus euphratica. We isolated a 1138 bp promoter fragment upstream of the translation initiation codon of PePLDδ. A promoter-reporter construct, PePLDδ-pro::GUS, was introduced into Arabidopsis plants (Arabidopsis thaliana) to demonstrate the NaCl-induced PePLDδ promoter activity in root and leaf tissues. Mass spectrometry analysis of DNA pull-down-enriched proteins in P. euphratica revealed that PeGLABRA3, a basic helix-loop-helix transcription factor, was the target transcription factor for binding the promoter region of PePLDδ. The PeGLABRA3 binding to PePLDδ-pro was further verified by virus-induced gene silencing, luciferase reporter assay (LRA), yeast one-hybrid assay, and electrophoretic mobility shift assay (EMSA). In addition, the PeGLABRA3 gene was cloned and overexpressed in Arabidopsis to determine the function of PeGLABRA3 in salt tolerance. PeGLABRA3-overexpressed Arabidopsis lines (OE1 and OE2) had a greater capacity to scavenge reactive oxygen species (ROS) and to extrude Na+ under salinity stress. Furthermore, the EMSA and LRA results confirmed that PeGLABRA3 interacted with the promoter of AtPLDδ in transgenic plants. The upregulated AtPLDδ in PeGLABRA3-transgenic lines resulted in an increase in phosphatidic acid species under no-salt and saline conditions. We conclude that PeGLABRA3 activated AtPLDδ transcription under salt stress by binding to the AtPLDδ promoter region, conferring Na+ and ROS homeostasis control via signaling pathways mediated by PLDδ and phosphatidic acid.


Asunto(s)
Arabidopsis , Populus , Tolerancia a la Sal/genética , Populus/genética , Populus/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Cloruro de Sodio/farmacología , Cloruro de Sodio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Regulación de la Expresión Génica de las Plantas
12.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37047526

RESUMEN

The human papillomavirus (HPV) E2 protein is essential for regulating the initiation of viral DNA replication as well as the regulation of transcription of certain HPV-encoded genes. Its ability to recognize and bind to its four recognition sequences in the viral origin is a key step in the initiation of HPV DNA replication. Thus, understanding the mechanism of DNA binding by E2 protein and the unique roles played by individual DNA sequence elements of the replication origin is essential. We have purified the recombinant full-length HPV type 11 E2 protein. Quantitative DNA binding analysis indicated E2 protein bound all four DNA binding sites with reasonably high affinities but with distinct preferences. It bound its cognate binding sites 1, 2, and 4 with higher affinities, but bound binding site 3 with lower affinity. Analysis of binding to these sites unraveled multiple sequence elements that appeared to influence E2 binding affinity and target discrimination, including the sequence of spacer region, flanking sequences, and proximity of E2 binding sites. Thermodynamic analysis indicated hydrophobic interaction in the protein-DNA complex formation. Our studies indicate a large multi-protein complex formation on the HPV-origin DNA, likely due to reasonably high binding affinities as well as intrinsic oligomerization propensity of E2 dimers.


Asunto(s)
Replicación del ADN , Infecciones por Papillomavirus , Humanos , Secuencia de Bases , Sitios de Unión/genética , ADN Viral/genética , ADN Viral/metabolismo , Virus del Papiloma Humano , Papillomaviridae/genética , Papillomaviridae/metabolismo , Infecciones por Papillomavirus/genética , Origen de Réplica , Replicación Viral/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
13.
bioRxiv ; 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36860938

RESUMEN

The Borrelia burgdorferi SpoVG protein has previously been found to be a DNA- and RNA-binding protein. To aid in the elucidation of ligand motifs, affinities for numerous RNAs, ssDNAs, and dsDNAs were measured and compared. The loci used in the study were spoVG, glpFKD, erpAB, bb0242, flaB, and ospAB, with particular focus on the untranslated 5' portion of the mRNAs. Performing binding and competition assays yielded that the 5' end of spoVG mRNA had the highest affinity while the lowest observed affinity was to the 5' end of flaB mRNA. Mutagenesis studies of spoVG RNA and ssDNA sequences suggested that the formation of SpoVG-nucleic acid complexes are not entirely dependent on either sequence or structure. Additionally, exchanging uracil for thymine in ssDNAs did not affect protein-nucleic acid complex formation.

14.
Biochem Biophys Res Commun ; 654: 40-46, 2023 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-36889033

RESUMEN

The Borrelia burgdorferi SpoVG protein has previously been found to be a DNA- and RNA-binding protein. To aid in the elucidation of ligand motifs, affinities for numerous RNAs, ssDNAs, and dsDNAs were measured and compared. The loci used in the study were spoVG, glpFKD, erpAB, bb0242, flaB, and ospAB, with particular focus on the untranslated 5' portion of the mRNAs. Performing binding and competition assays yielded that the 5' end of spoVG mRNA had the highest affinity while the lowest observed affinity was to the 5' end of flaB mRNA. Mutagenesis studies of spoVG RNA and ssDNA sequences suggested that the formation of SpoVG-nucleic acid complexes are not entirely dependent on either sequence or structure. Additionally, exchanging uracil for thymine in ssDNAs did not affect protein-nucleic acid complex formation.


Asunto(s)
Borrelia burgdorferi , ARN , ARN/genética , ARN/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ADN/genética , ADN/metabolismo , Borrelia burgdorferi/genética , Borrelia burgdorferi/metabolismo , ARN Mensajero/metabolismo , Ensayo de Cambio de Movilidad Electroforética
15.
J Biol Inorg Chem ; 28(3): 301-315, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36820987

RESUMEN

Zinc finger proteins specifically recognize DNA sequences and, therefore, play a crucial role in living organisms. In this study the Zn(II)-, and DNA-binding of 1MEY#, an artificial zinc finger protein consisting of three finger units was characterized by multiple methods. Fluorimetric, circular dichroism and isothermal calorimetric titrations were applied to determine the accurate stability constant of a zinc finger protein. Assuming that all three zinc finger subunits behave identically, the obtained thermodynamic data for the Zn(II) binding were ΔHbinding site = - (23.5 - 28.0) kcal/mol (depending on the applied protonation state of the cysteines) and logß'pH 7.4 = 12.2 ± 0.1, being similar to those of the CP1 consensus zinc finger peptide. The specific DNA binding of the protein can be characterized by logß'pH 7.4 = 8.20 ± 0.08, which is comparable to the affinity of the natural zinc finger proteins (Sp1, WT1, TFIIIA) toward DNA. This value is ~ 1.9 logß' unit higher than those determined for semi- or nonspecific DNA binding. Competitive circular dichroism and electrophoretic mobility shift measurements revealed that the conditional stability constant characteristic for Zn(II) binding of 1MEY# protein increased by 3.4 orders of magnitude in the presence of its target DNA sequence.


Asunto(s)
Péptidos , Dedos de Zinc , Péptidos/química , Sitios de Unión , ADN/metabolismo , Zinc/química , Unión Proteica
16.
J Biochem ; 173(6): 447-457, 2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-36748338

RESUMEN

The interaction of the ß-coronavirus severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) nucleocapsid (N) protein with genomic RNA is initiated by specific RNA regions and subsequently induces the formation of a continuous polymer with characteristic structural units for viral formation. We hypothesized that oligomeric RNAs, whose sequences are absent in the 29.9-kb genome sequence of SARS-CoV-2, might affect RNA-N protein interactions. We identified two such hexameric RNAs, In-1 (CCGGCG) and G6 (GGGGGG), and investigated their effects on the small filamentous/droplet-like structures (< a few µm) of N protein-genomic RNA formed by liquid-liquid phase separation. The small N protein structures were sequence-specifically enhanced by In-1, whereas G6 caused them to coalesce into large droplets. Moreover, we found that a guanosine 12-mer (G12, GGGGGGGGGGGG) expelled preexisting genomic RNA from the small N protein structures. The presence of G12 with the genomic RNA suppressed the formation of the small N protein structures, and alternatively apparently altered phase separation to induce the formation of large droplets with unclear phase boundaries. We showed that the N-terminal RNA-binding domain is required for the stability of the small N protein structures. Our results suggest that G12 may be a strong inhibitor of the RNA-N protein interaction.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Proteínas de la Nucleocápside/química , Proteínas de la Nucleocápside/genética , Proteínas de la Nucleocápside/metabolismo , ARN Viral/genética , ARN Viral/química , ARN Viral/metabolismo , Unión Proteica
17.
Methods Mol Biol ; 2615: 139-151, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36807790

RESUMEN

Mitochondrial transcription factor A (TFAM) is a mitochondrial DNA (mtDNA)-binding protein that plays a crucial dual role in the initiation of mitochondrial transcription initiation and mtDNA maintenance. Because TFAM directly interacts with mtDNA, assessing its DNA-binding property can provide useful information. This chapter describes two in vitro assay methods, an electrophoretic mobility shift assay (EMSA) and a DNA-unwinding assay with recombinant TFAM proteins, which both require simple agarose gel electrophoresis. These are used to investigate the effects of mutations, truncation, and posttranslational modifications on this key mtDNA regulatory protein.


Asunto(s)
ADN Mitocondrial , Mitocondrias , Humanos , ADN Mitocondrial/genética , Mitocondrias/metabolismo , Transcripción Genética , Proteínas Mitocondriales/metabolismo , Regulación de la Expresión Génica , Unión Proteica , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/metabolismo
18.
Biochim Biophys Acta Proteins Proteom ; 1871(3): 140902, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36716944

RESUMEN

LexA, a well-characterized transcriptional repressor of SOS genes in heterotrophic bacteria, has been shown to regulate diverse genes in cyanobacteria. An earlier study showed that LexA overexpression in a cyanobacterium, Anabaena sp. PCC7120 reduces its tolerance to Cd stress. This was later shown to be due to modulation of photosynthetic redox poising by LexA under Cd stress. However, due to the global regulatory nature of LexA and the prior prediction of AnLexA-box in a few heavy metal-responsive genes, we speculated that LexA has a broad role in Cd tolerance, with regulation over a variety of Cd stress-responsive genes in addition to photosynthetic genes. Thus, to further expand the knowledge on the regulatory role of LexA in Cd stress tolerance, a cytosolic proteome profiling of Anabaena constitutively overexpressing LexA upon Cd stress was performed. The proteomic study revealed 25 differentially accumulated proteins (DAPs) in response to the combined effect of LexA overexpression and Cd stress, and the other 11 DAPs exclusively in response to either LexA overexpression or Cd stress. The 36 identified proteins were related with a variety of functions, including photosynthesis, C-metabolism, antioxidants, protein turnover, post-transcriptional modifications, and a few unknown and hypothetical proteins. The regulation of LexA on corresponding genes, and six previously reported Cd efflux transporters, was further validated by the presence of AnLexA-boxes, transcript, and/or promoter analyses. In a nutshell, this study identifies the regulation of Anabaena LexA on several Cd stress-responsive genes of various functions, hence expanding the regulatory role of LexA under Cd stress.


Asunto(s)
Anabaena , Cianobacterias , Proteoma/metabolismo , Cadmio/metabolismo , Proteómica , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cianobacterias/metabolismo , Anabaena/genética , Anabaena/metabolismo , Factores de Transcripción/metabolismo
19.
J Cell Biochem ; 124(3): 337-358, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36715571

RESUMEN

Specific interactions between transcription factors (TFs) and substrate DNA constitute the fundamental basis of gene expression. Unlike in TFs like basic helix-loop-helix or basic leucine zippers, prediction of substrate DNA is extremely challenging for helix-turn-helix (HTH). Experimental techniques like chromatin immunoprecipitation combined with massively parallel DNA sequencing remains a viable option. We characterize the molecular basis of heterogeneity in HTH-DNA interaction using in silico tools and thence validate them experimentally. Given the profound functional diversity in HTH, we focus primarily on winged-HTH (wHTH). We consider 180 wHTH TFs, whose experimental three-dimensional structures are available in DNA bound/unbound conformations. Starting with PDB-wide scanning and curation of data, we construct a phylogenetic tree, which distributes 180 wHTH sequences under multiple sub-groups. Structure-sequence alignment followed by detailed intra/intergroup analysis, covariation studies and extensive network theory analysis help us to gain deep insight into heterogeneous wHTH-substrate DNA interactions. A central aim of this study is to find a consensus to predict the substrate DNA sequence for wHTH, amidst heterogeneity. The strength of our exhaustive theoretical investigations including molecular docking are successfully tested through experimental characterization of wHTH TF from Sulfurimonas denitrificans.


Asunto(s)
Proteínas de Unión al ADN , ADN , Proteínas de Unión al ADN/metabolismo , Simulación del Acoplamiento Molecular , Filogenia , Secuencias Hélice-Giro-Hélice , ADN/química
20.
Plant Sci ; 326: 111529, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36332765

RESUMEN

High radioresistance of the cyanobacterium, Anabaena sp. PCC7120 has been attributed to efficient DNA repair, protein recycling, and oxidative stress management. However, the regulatory network involved in these batteries of responses remains unexplored. In the present study, the role of a global regulator, LexA in modulating gamma (γ)-radiation stress response of Anabaena was investigated. Comparison of the cytosolic proteome profiles upon γ-radiation in recombinant Anabaena strains, AnpAM (vector-control) and AnlexA+ (LexA-overexpressing), revealed 41 differentially accumulated proteins, corresponding to 29 distinct proteins. LexA was found to be involved in the regulation of 27 of the corresponding genes based on the presence of AnLexA-Box, EMSA, and/or qRT-PCR studies. The majority of the regulated genes were found to be involved in C-assimilation either through photosynthesis or C-catabolism and oxidative stress alleviation. Photosynthesis, measured in terms of PSII photophysiological parameters and thylakoid membrane proteome was found to be affected by γ-radiation in both AnpAM and AnlexA+ cells, with LexA affecting them even under control growth conditions. Thus, LexA functioned as one of the transcriptional regulators involved in modulating γ-radiation stress response in Anabaena. This study could pave the way for a deeper understanding of the regulation of γ-radiation-responsive genes in cyanobacteria at large.


Asunto(s)
Anabaena , Cianobacterias , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Anabaena/genética , Anabaena/metabolismo , Cianobacterias/metabolismo , Reparación del ADN , Proteoma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA