Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Front Cell Dev Biol ; 10: 836755, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35386204

RESUMEN

Mitochondria are multifunctional organelles of which ultrastructure is tightly linked to cell physiology. Accumulating evidence shows that mitochondrial remodeling has an impact on immune responses, but our current understanding of the mitochondrial architecture, interactions, and morphological changes in immune cells, mainly in eosinophils, is still poorly known. Here, we applied transmission electron microscopy (TEM), single-cell imaging analysis, and electron tomography, a technique that provides three-dimensional (3D) views at high resolution, to investigate mitochondrial dynamics in mouse eosinophils developing in cultures as well as in the context of inflammatory diseases characterized by recruitment and activation of these cells (mouse models of asthma, H1N1 influenza A virus (IAV) infection, and schistosomiasis mansoni). First, quantitative analyses showed that the mitochondrial area decrease 70% during eosinophil development (from undifferentiated precursor cells to mature eosinophils). Mitophagy, a consistent process revealed by TEM in immature but not in mature eosinophils, is likely operating in mitochondrial clearance during eosinophilopoiesis. Events of mitochondria interaction (inter-organelle membrane contacts) were also detected and quantitated within developing eosinophils and included mitochondria-endoplasmic reticulum, mitochondria-mitochondria, and mitochondria-secretory granules, all of them significantly higher in numbers in immature compared to mature cells. Moreover, single-mitochondrion analyses revealed that as the eosinophil matures, mitochondria cristae significantly increase in number and reshape to lamellar morphology. Eosinophils did not change (asthma) or reduced (IAV and Schistosoma infections) their mitochondrial mass in response to inflammatory diseases. However, asthma and schistosomiasis, but not IAV infection, induced amplification of both cristae numbers and volume in individual mitochondria. Mitochondrial cristae remodeling occurred in all inflammatory conditions with the proportions of mitochondria containing only lamellar or tubular, or mixed cristae (an ultrastructural aspect seen just in tissue eosinophils) depending on the tissue/disease microenvironment. The ability of mitochondria to interact with granules, mainly mobilized ones, was remarkably captured by TEM in eosinophils participating in all inflammatory diseases. Altogether, we demonstrate that the processes of eosinophilopoiesis and inflammation-induced activation interfere with the mitochondrial dynamics within mouse eosinophils leading to cristae remodeling and inter-organelle contacts. The understanding of how mitochondrial dynamics contribute to eosinophil immune functions is an open interesting field to be explored.

2.
Cell Microbiol ; 23(9): e13346, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33900003

RESUMEN

Endocytosis in Trypanosoma cruzi is mainly performed through a specialised membrane domain called cytostome-cytopharynx complex. Its ultrastructure and dynamics in endocytosis are well characterized in epimastigotes, being absent in trypomastigotes, that lack endocytic activity. Intracellular amastigotes also possess a cytostome-cytopharynx but participation in endocytosis of these forms is not clear. Extracellular amastigotes can be obtained from the supernatant of infected cells or in vitro amastigogenesis. These amastigotes share biochemical and morphological features with intracellular amastigotes but retain trypomastigote's ability to establish infection. We analysed and compared the ultrastructure of the cytostome-cytopharynx complex of intracellular amastigotes and extracellular amastigotes using high-resolution tridimensional electron microscopy techniques. We compared the endocytic ability of intracellular amastigotes, obtained through host cell lysis, with that of extracellular amastigotes. Intracellular amastigotes showed a cytostome-cytopharynx complex similar to epimastigotes'. However, after isolation, the complex undergoes ultrastructural modifications that progressively took to an impairment of endocytosis. Extracellular amastigotes do not possess a cytostome-cytopharynx complex nor the ability to endocytose. Those observations highlight morpho functional differences between intra and extracellular amastigotes regarding an important structure related to cell metabolism. TAKE AWAYS: T. cruzi intracellular amastigotes endocytose through the cytostome-cytopharynx complex. The cytostome-cytopharynx complex of intracellular amastigotes is ultrastructurally similar to the epimastigote. Intracellular amastigotes, once outside the host cell, disassembles the cytostome-cytopharynx membrane domain. Extracellular amastigotes do not possess a cytostome-cytopharynx either the ability to endocytose.


Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Membrana Celular , Endocitosis , Humanos , Microscopía Electrónica
3.
Methods Mol Biol ; 2116: 425-447, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32221935

RESUMEN

In this chapter we describe different electron microscopy techniques such as freeze fracture, deep etching, and three-dimensional reconstruction, obtained by electron tomography or focused ion beam scanning electron microscopy (FIB-SEM), combined with quick-freezing methods in order to reveal aspects of the cell structure in trypanosomatids. For this purpose, we chose protists that evolve in a mutualistic way with a symbiotic bacterium. Such cells represent excellent models to study the positioning and distribution of organelles, since the symbiotic bacterium interacts with different organelles of the host trypanosomatid. We demonstrate that the employment of such techniques can show the proximity and even the interaction of the symbiotic bacterium with different structures of the protist host, such as the nucleus and the glycosomes. In addition, the quick-freezing approach can reveal new aspects of the gram-negative bacterial envelope, such as the presence of a greatly reduced cell wall between the two membrane units.


Asunto(s)
Bacterias/citología , Microscopía Electrónica de Rastreo/métodos , Trypanosomatina/microbiología , Núcleo Celular/microbiología , Pared Celular , Microcuerpos/microbiología , Microscopía Electrónica de Rastreo/instrumentación , Simbiosis , Trypanosomatina/citología
4.
Viruses ; 9(2)2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28216551

RESUMEN

Prior to the discovery of the mimivirus in 2003, viruses were thought to be physically small and genetically simple. Mimivirus, with its ~750-nm particle size and its ~1.2-Mbp genome, shattered these notions and changed what it meant to be a virus. Since this discovery, the isolation and characterization of giant viruses has exploded. One of the more recently discovered giant viruses, Samba virus, is a Mimivirus that was isolated from the Rio Negro in the Brazilian Amazon. Initial characterization of Samba has revealed some structural information, although the preparation techniques used are prone to the generation of structural artifacts. To generate more native-like structural information for Samba, we analyzed the virus through cryo-electron microscopy, cryo-electron tomography, scanning electron microscopy, and fluorescence microscopy. These microscopy techniques demonstrated that Samba particles have a capsid diameter of ~527 nm and a fiber length of ~155 nm, making Samba the largest Mimivirus yet characterized. We also compared Samba to a fiberless mimivirus variant. Samba particles, unlike those of mimivirus, do not appear to be rigid, and quasi-icosahedral, although the two viruses share many common features, including a multi-layered capsid and an asymmetric nucleocapsid, which may be common amongst the Mimiviruses.


Asunto(s)
Mimiviridae/ultraestructura , Brasil , Cápside/ultraestructura , Microscopía , Mimiviridae/aislamiento & purificación , Ríos/virología
5.
Methods Cell Biol ; 127: 509-42, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25837406

RESUMEN

Three-dimensional electron microscopy tools have revolutionized our understanding of cell structure and molecular complexes in biology. Here, we describe methods for studying flagellar ultrastructure and biogenesis in two unicellular parasites-Trypanosoma brucei and Leishmania mexicana. We describe methods for the preparation of these parasites for scanning electron microscopy cellular electron tomography, and serial block face scanning electron microscopy (SBFSEM). These parasites have a highly ordered cell shape and form, with a defined positioning of internal cytoskeletal structures and organelles. We show how knowledge of these can be used to dissect cell cycles in both parasites and identify the old flagellum from the new in T. brucei. Finally, we demonstrate the use of SBFSEM three-dimensional models for analysis of individual whole cells, demonstrating the excellent potential this technique has for future studies of mutant cell lines.


Asunto(s)
Movimiento Celular/fisiología , Flagelos/ultraestructura , Leishmania mexicana/fisiología , Trypanosoma brucei brucei/fisiología , Animales , Ciclo Celular/genética , ADN Protozoario/genética , Tomografía con Microscopio Electrónico/métodos , Flagelos/fisiología , Imagenología Tridimensional/métodos , Leishmania mexicana/genética , Leishmania mexicana/crecimiento & desarrollo , Microscopía Electrónica de Rastreo/métodos , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/crecimiento & desarrollo , Moscas Tse-Tse/parasitología
6.
J Cell Sci ; 127(Pt 10): 2227-37, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24610945

RESUMEN

The cytostome-cytopharynx complex is the main site of endocytosis of Trypanosoma cruzi epimastigotes. Little is known about the detailed morphology of this remarkable structure. We used serial electron tomography and focused-ion-beam scanning electron microscopy to reconstruct the entire complex, including the surrounding cytoskeleton and vesicles. Focusing on cells that had taken up gold-labeled tracers, we produced three-dimensional snapshots of the process of endocytosis. The cytostome cytoskeleton was composed of two microtubule sets--a triplet that started underneath the cytostome membrane, and a quartet that originated underneath the flagellar-pocket membrane and followed the preoral ridge before reaching the cytopharynx. The two sets accompanying the cytopharynx formed a 'gutter' and left a microtubule-free side, where vesicles were found to be associated. Cargo was unevenly distributed along the lumen of the cytopharynx, forming clusters. The cytopharynx was slightly longer during the G2 phase of the cell cycle, although it did not reach the postnuclear region owing to a bend in its path. Therefore, the cytopharynx is a dynamic structure, undergoing remodeling that is likely associated with endocytic activity and the preparation for cell division.


Asunto(s)
Trypanosoma cruzi/ultraestructura , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Tomografía con Microscopio Electrónico/métodos , Endocitosis , Microtúbulos/metabolismo , Trypanosoma cruzi/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA