Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 249
Filtrar
1.
ACS Appl Bio Mater ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39289180

RESUMEN

Orthopedic implants, such as porous scaffolds, are an effective way to repair bone defects. However, the lack of osseointegration and osteoinduction limits the achievement of an ideal therapeutic effect. This study aimed to prepare hydroxyapatite (HA) coatings for the surface of porous tantalum (Ta) scaffolds and to assess the effectively improved biological activities of the coated scaffolds. The porous Ta scaffolds were prepared by chemical vapor deposition, and then the porous Ta scaffolds were coated with HA via electrochemical deposition. The elements and phase compositions of the coatings were analyzed by energy-dispersive X-ray spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The results showed that the coating covered the whole surfaces of porous Ta scaffolds with a uniform and compact distribution and did not exert any obvious effect on the porous structure. The biological activity of porous Ta scaffolds after surface modification increased and the water contact angle decreased, indicating that hydrophilicity was significantly improved. Cell live/dead staining, cytoskeletal fluorescence staining, and alkaline phosphatase immunofluorescence staining showed that the coating exhibited no cytotoxicity and notably improved cell proliferation, spreading, and osteogenic differentiation. In addition, in vivo experiments in animals have demonstrated that HA-coated porous Ta scaffolds contribute to bone formation. In conclusion, the HA coating notably improves the biological activities of the porous Ta scaffolds, achieving the goal of the present study. The HA coating presents great potential for the modification of porous Ta implants to improve their osteogenesis and osseointegration.

2.
Heliyon ; 10(17): e37342, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39290268

RESUMEN

Copper and its alloys due to favorable properties such as ductility, high electrical and thermal conductivity are very important in various industries. The coating of rare earth elements and intermediate elements is a suitable method to form a super-hydrophobic coating on copper substrate. The aim of this research is to fabricate a controlled super-hydrophobic coating of cerium-zirconium myristate on the copper base using the electrochemical deposition process and to prevent the corrosive solution penetration and reaching to the copper substrate due to removing the corrosive solution from the surface of the coating. The variables parameters in this process are the change of deposition time, the different concentrations of cerium chloride, and zirconium chloride salts and is necessary to investigate their effect of them on the structural morphology, wettability and corrosion properties. According to the results of Field Emission Scanning Electron Microscope (FE-SEM), the surface morphology of the coatings is consisted of lotus-like nano and micro leaves. Furthermore, the wettability of the prepared coatings was analyzed and observed by measuring the contact angle of the coating with water droplet that the fabricated coating from the electrolyte containing 0.056 M of cerium chloride, 0.014 M of zirconium chloride, 0.1 M of myristic acid, 10 ml of hydrochloric acid and ethanol solvent has super-hydrophobic properties and the contact angle with water droplet is measured at 161°. The FT-IR and EDS analysis showed that the chemical composition of lotus-like leaves is cerium myristate and zirconium myristate. As a result, it can be inferred that the type of morphology and surface roughness play an important role in inducing the super-hydrophobic properties and has the most effect on the corrosion resistance of the coating due to the formation air pockets and then to prevents the corrosive solution penetration through the cross section of the coating and reaches to the copper substrate.

3.
Talanta ; 280: 126730, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39186859

RESUMEN

The expansive potential of surface-enhanced Raman scattering (SERS) has been well-established; however, the primary bottleneck hindering its routine analytical and commercial implementation is the poor signal reproducibility and challenges in substrate fabrication. Thus, the current work attempts to synthesize a scalable and reproducible nanoporous gold (npAu) decorated with gold (Au) nanoparticles to generate a highly structured Au@npAu nanocomposite. The substrate fabrication completes via three distinct routes: i) selective dealloying to form npAu on the Au film, ii) the fast deposition (i-t = -0.8 V, t = 10.0 s) of Au atoms across the npAu surface, and finally iii) the precise growth control of the generated Au@npAu by a series of by oxidation-reduction cycles (-0.03 to -0.4 V for 80.0 segments at ν = 50.0 mVs-1). The simulations of the dealloyed npAu and the final Au@npAu nanocomposite showed that the reduced interparticle spacing and ligament size in the Au@npAu nanocomposite is crucial for forming abundant "hot spot" regions with highly concentrated electromagnetic fields. The Au@npAu substrate reproducibility was assessed on 400.0 sites for SERS spectral acquisition with a relative standard deviation of 9.22 %. Furthermore, the Au@npAu was checked under different preparation batches for intra- and inter-day analysis and storage for 20.0 days with good stability. Finally, the substrate was checked for direct SERS detection of ferbam residues with a 4.34 × 10-9 mol L-1 sensitivity and examined in real samples with satisfactory recoveries (97.63 ± 1.95%-99.16 ± 0.24 %). This work offers a promising avenue towards highly reproducible, scalable and universal Au@npAu SERS substrate fabrication in diverse SERS-related applications.

4.
Mikrochim Acta ; 191(9): 564, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39190188

RESUMEN

A simple and efficient dual-signal electrochemical sensor was designed for glyphosate (GLYP) determination based on the one-step electro-synthesized Cu-Hemin MOFs/CNTs nanocrystals. Cu-Hemin MOFs/CNTs were directly modified on the electrode through electrodeposition, avoiding complicated synthesis and modification processes. The incorporation of CNTs greatly boosted the conductivity of Cu-Hemin MOFs and the sensitivity of the electrochemical sensor. Cu active sites in Cu-Hemin MOFs were converted to CuCl, allowing the specific detection of GLYP with the turn of CuCl into non-electroactive Cu-GLYP. Meanwhile, GLYP showed highly effective inhibition effect on the inherent peroxidase-like activity of Cu-Hemin MOFs, therefore generating the second electrochemical signal with Cu-Hemin MOFs-catalyzed o-phenylenediamine (o-PD) + H2O2 system. The Cu-Hemin MOFs/CNTs based sensor with two electrochemical signals showed good linearities of 1.0 × 10-10 M - 3.0 × 10-6 M and 1.0 × 10-10 M - 5.0 × 10-5 M, with detection limits of 5.17 × 10-12 M and 6.81 × 10-12 M for the CuCl signal based assay and nanozyme catalyzed o-PD + H2O2 procedure, respectively. This simple and robust dual-signal sensor with excellent selectivity, accuracy, and stability allowed GLYP quantification in real samples, highlighting the potential application of this approach for food and environmental monitoring.

5.
Waste Manag ; 188: 1-10, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39084179

RESUMEN

Effective recovery of Li, Co, Ni and Mn from cathode materials of spent lithium-ion batteries (LIBs) has become a global concern. In this study, electrolysis of copper sulfate to produce sulfuric acid and electrons were utilized to recover Li, Co, Ni and Mn from spent LIBs. The obtained results showed that 93 % of Ni, 91 % of Co, 89 % of Mn and 94 % of Li were leached and 99 % of Cu was deposited during leaching process by adopting the 0.225 mol/L of copper sulfate with a solid/liquid ratio of 15 g/L at a current density of 50 mA/m2 and 80 °C for 4.5 h. Then, a current efficiency of 72 % for the cathode and 30 % for the anode was achieved at a current density of 40 mA/m2, 70 °C and pH 2.5 during electrodeposition process. The Ni-Co deposition followed the principle of anomalous codeposition and the complete deposition time of Co, Ni and Mn were 3 h, 9 h and 10 h, respectively. Eventually, the Ni, Co, Mn, Li and Cu can be recovered as Ni-Co alloy, MnO2 and Li2CO3 and Cu metals with the corresponding recovery rates of 99.40 %, 91.00 %, 90.68 %, 85.59 % and 89.55 %, respectively. This study proposes a promising strategy for recycling cathode materials from spent LIBs without addition of chemical reductants and acids.


Asunto(s)
Suministros de Energía Eléctrica , Litio , Reciclaje , Reciclaje/métodos , Litio/química , Electrodos , Técnicas Electroquímicas/métodos , Residuos Electrónicos , Metales/química , Ácidos Sulfúricos/química
6.
Sci Rep ; 14(1): 15970, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987551

RESUMEN

Copper-zinc-tin Cu2ZnSn (CZT) thin films are promising materials for solar cell applications. This thin film was deposited on a fluorine-doped tin oxide (FTO) using an electrochemical deposition hierarchy. X-ray diffraction of thin-film studies confirms the variation in the structural orientation of CZT on the FTO surface. As the pH of the solution is increased, the nature of the CZT thin-film aggregate changes from a fern-like leaf CZT dendrite crystal to a disk pattern. The FE-SEM surface micrograph shows the dendrite fern leaf and sharp edge disks. The 2-D diffusion limitation aggregation under slippery conditions for ternary thin films was performed for the first time. The simulation showed that by changing the diffusing species, the sticking probability was responsible for the pH-dependent morphological change. Convincingly, diffusion-limited aggregation (DLA) simulations confirm that the initial structure of copper is responsible for the final structure of the CZT thin films. An experimental simulation with pH as a controlled parameter revealed phase transition in CZT thin films. The top and back contact of Ag-CZT thin films based on Schottky behavior give a better electronic mechanism in superstrate and substrate solar cells.

7.
Nanomaterials (Basel) ; 14(14)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39057902

RESUMEN

This research introduces a novel approach using silver (Ag) nanostructures generated through electrochemical deposition and photo-reduction of Ag on fluorine-doped tin oxide glass substrates (denoted as X-Ag-AgyFTO, where 'X' and 'y' represent the type of light source and number of deposited cycles, respectively) for surface-enhanced Raman spectroscopy (SERS). This study used malachite green (MG) as a Raman probe to evaluate the enhancement factors (EFs) in SERS-active substrates under varied fabrication conditions. For the substrates produced via electrochemical deposition, we determined a Raman EF of 6.15 × 104 for the Ag2FTO substrate. In photo-reduction, the impact of reductant concentration, light source, and light exposure duration were examined on X-Ag nanoparticle formation to achieve superior Raman EFs. Under optimal conditions (9.0 mM sodium citrate, 460 nm blue-LED at 10 W for 90 min), the combination of blue-LED-reduced Ag (B-Ag) and an Ag2FTO substrate (denoted as B-Ag-Ag2FTO) exhibited the best Raman EF of 2.79 × 105. This substrate enabled MG detection within a linear range of 0.1 to 1.0 µM (R2 = 0.98) and a detection limit of 0.02 µM. Additionally, the spiked recoveries in aquaculture water samples were between 90.0% and 110.0%, with relative standard deviations between 3.9% and 6.3%, indicating the substrate's potential for fungicide detection in aquaculture.

8.
ACS Appl Mater Interfaces ; 16(30): 40222-40230, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39028921

RESUMEN

We present a novel and stable laminated structure to enhance the performance and stability of silicon (Si) photocathode devices for photoelectrochemical (PEC) water splitting. First, by utilizing Cu nanoparticle catalysts to work on a n+p-black Si substrate via the metal-assisted chemical etching, we can achieve the black silicon with a porous pyramid structure. The low depth holes on the surface of the pyramid caused by Cu etching not only help enhance the light capture capability with quite low surface reflectivity (<5%) but also efficiently protect the p-n junction from damage. To improve the charge migration efficiency and mitigate parasitic light absorption from cocatalysts at the same time, we drop casted quantum dots (QDs) MoS2 with the size of nanometer scale as the first layer of catalyst. Hence, we then can safely electrodeposit cocatalyst Co nanoparticles to further enhance interface transfer efficiency. The synergistic effects of cocatalysts and optimized light absorption from the morphology and QDs contributed to the overall enhancement of PEC performance, offering a promising pathway for an efficient, low cost, and stable (over 100 h) hydrogen production photocathode.

9.
Anal Sci ; 40(9): 1671-1681, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38811524

RESUMEN

In contrast to the hyperactive platinum electrode, ARS modified platinum electrode presents a remarkable inertness toward adsorption and surface processes and lends it for further voltammetric applications. Measuring pyrogallol levels in samples is significant for assessing their antioxidant activity, which is crucial for understanding their potential health benefits and ability to combat oxidative stress. In addition, the excess consumption of pyrogallol can have significant negative effects on human health. A voltammetric sensor has been developed for the determination of pyrogallol using ARS modified platinum electrode. The electrode was prepared by electrodeposition of alizarin red S on a platinum electrode using cyclic voltammetry with a potential scan range of - 0.4 to 1.2 V against an Ag/AgCl quasi reference electrode for 60 cycles as optimum number of cycles. The modified electrode was characterized by CV and SEM techniques. This modified alizarin red S platinum electrode showed remarkable electrocatalytic performance and stability, resulting in a significant increase in pyrogallol oxidation current by 11.05% compared to the pyrogallol oxidative current at the unmodified platinum electrode. A well-defined oxidation peak was observed at ~ 0.40 V. The sensor exhibited a low limit of detection (LOD) of 0.28 µM and a linear standard curve covering the ranges of 1.0-40 µM and 0.01-10.0 mM pyrogallol. Extensive studies were performed to evaluate possible interferences from various organic and inorganic compounds and yielded satisfactory results that confirm the selectivity of the developed sensor for pyrogallol determination. In addition, the ARS-Pt electrode provided consistently reliable results for the accurate detection of pyrogallol in water and tomato samples.


Asunto(s)
Antraquinonas , Electrodos , Platino (Metal) , Pirogalol , Solanum lycopersicum , Pirogalol/química , Pirogalol/análisis , Pirogalol/análogos & derivados , Platino (Metal)/química , Solanum lycopersicum/química , Antraquinonas/química , Límite de Detección , Agua/química , Técnicas Electroquímicas/instrumentación , Electroquímica/instrumentación
10.
3D Print Addit Manuf ; 11(2): e743-e750, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38694833

RESUMEN

Facing the rapid development of 6G communication, long-wave infrared metasurface and biomimetic microfluidics, the performance requirements for microsystems based on metal tiny structures are gradually increasing. As one of powerful methods for fabrication metal complex microstructures, localized electrochemical deposition microadditive manufacturing technology can fabricate copper metal micro overhanging structures without masks and supporting materials. In this study, the role of the microprobe cantilever (MC) in localized electrodeposition was studied. The MC can be used for precise deposition with electrolyte localized transport function and high accuracy force-displacement sensitivity. To prove this, the electrolyte flow was simulated when the MC was in bending or normal state. The simulation results can indicate the influence of turbulent flow on the electrolyte flow velocity and the pressure at the end of the pyramid. The results show that the internal flow velocity increased by 8.9% in the bending probe as compared with normal. Besides, this study analyzed the force-potential sensitivity characteristics of the MC. Using the deformation of the MC as an intermediate variable, the model of the probe tip displacement caused by the growth of the deposit and the voltage value displayed by the photodetector was mathematically established. In addition, the deposition of a single voxel was simulated by simulation process with the simulated height of 520 nm for one voxel, and the coincidence of simulation and experimental results was 93.1%. In conclusion, this method provides a new way for localized electrodeposition of complex microstructures.

11.
Talanta ; 275: 126148, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38705016

RESUMEN

Latent fingerprints, as one of the most frequently encountered traces in crime scene investigation and also one of the largest sources of forensic evidence, can play a critical role in determining the identity of a person who may be involved in a crime. Due to the invisible characteristic of latent fingerprints, exploring efficient techniques to visualize them (especially the ones resided on metallic surfaces) while retain the biological and chemical information (e.g., touch DNA) has become a multidisciplinary research focus. Herein we reported a new and highly sensitive electrochemical interfacial strategy of simultaneously developing and enhancing latent fingerprints on stainless steel based on synchronous electrodeposition and electrochromism of manganese oxides in a neutral aqueous electrolyte. By utilizing a specially designed device for electrochemical testing and image capture, a series of electrochemical measurements, physical characterization and image analysis have been applied to evaluate the feasibility, development accuracy and enhancement efficacy of the proposed electrochemical system. The qualitative and quantitative analysis on the in situ and ex situ fingerprint images indicates that the three levels of fingerprint features can be precisely developed and effectively enhanced. Forensic DNA typing has also been performed to reveal actual impact of the proposed electrochemical system on subsequent analysis of touch DNA in fingerprint residues. The ratio of detected loci after electrochemical treatment reaches up to 98.5 %, showing non-destructive nature of this fingerprint development and enhancement technique.

12.
Materials (Basel) ; 17(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38612079

RESUMEN

This study introduces an innovative method for synthesizing Cadmium Oxide /Cadmium Sulfide/Zinc Oxide heterostructures (CdO/CdS/ZnO), emphasizing their potential application in solar energy. Utilizing a combination of electrochemical deposition and oxygen annealing, the research provides a thorough analysis of the heterostructures through scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD), Raman spectroscopy, and photoluminescence (PL) spectroscopy. The findings reveal a complex surface morphology and a composite structure with significant contributions from hexagonal CdS and cubic CdO phases. The study highlights the uniformity in the distribution of luminescent centers and the crystalline quality of the heterostructures, which is evident from the PL analysis. The redshift observed in the emission peak and the additional peaks in the excitation spectrum indicate intricate optical properties influenced by various factors, including quantum confinement and lattice strain. The research demonstrates these heterostructures' potential in enhancing solar cells' efficiency and applicability in optoelectronic devices. This comprehensive characterization and analysis pave the way for future optimization and application in efficient and sustainable solar energy solutions.

13.
Molecules ; 29(8)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38675596

RESUMEN

In this paper, two experimental procedures are reported, namely electro-deposition in the ultrathin liquid layer and chemical micro-etching. Firstly, a large area quasi-two-dimensional periodic membrane with adjustable density is deposited on a Si substrate driven by half-sinusoidal voltage, which is composed of raised ridges and a membrane between the ridges. The smaller the voltage frequency is, the larger the ridge distance is. The height of a raised ridge changes synchronously with the amplitude. The grain density distribution of membrane and raised ridge is uneven; the two structures change alternately, which is closely related to the change of growth voltage and copper ion concentration during deposition. The structural characteristics of membrane provide favorable conditions for micro-etching; stable etching speed and microscope real-time monitoring are the keys to achieve accurate etching. In the chemical micro-etching process, the membrane between ridges is removed, retaining the raised ridges, thus a large scale ordered micro-nano wires array with lateral growth was obtained. This method is simple and controllable, can be applied to a variety of substrates, and is the best choice for designing and preparing new functional materials. This experiment provides a basis for the extension of this method.

14.
Materials (Basel) ; 17(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38541381

RESUMEN

Electrochemical deposition into a prepared SiO2/Si-p ion track template was used to make orthorhombic SnO2 vertical nanowires (NWs) for this study. As a result, a SnO2-NWs/SiO2/Si nanoheterostructure with an orthorhombic crystal structure of SnO2 nanowires was obtained. Photoluminescence excited by light with a wavelength of 240 nm has a low intensity, arising mainly due to defects such as oxygen vacancies and interstitial tin or tin with damaged bonds. The current-voltage characteristic measurement showed that the SnO2-NWs/SiO2/Si nanoheterostructure made this way has many p-n junctions.

15.
Adv Mater ; 36(25): e2307286, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38516842

RESUMEN

Solid oxide fuel cells that operate at intermediate temperatures require efficient catalysts to enhance the inherently poor electrochemical activity of the composite electrodes. Here, a simple and practical electrochemical deposition method is presented for fabricating a PrOx overlayer on lanthanum strontium manganite-yttria-stabilized zirconia (LSM-YSZ) composite electrodes. The method requires less than four minutes for completion and can be carried out under at ambient temperature and pressure. Crucially, the treatment significantly improves the electrode's performance without requiring heat treatment or other supplementary processes. The PrOx-coated LSM-YSZ electrode exhibits an 89% decrease in polarization resistance at 650 °C (compared to an untreated electrode), maintaining a tenfold reduction after ≈400 h. Transmission line model analysis using impedance spectra confirms how PrOx coating improved the oxygen reduction reaction activity. Further, tests with anode-supported single cells reveal an outstanding peak power density compared to those of other LSM-YSZ-based cathodes (e.g., 418 mW cm-2 at 650 °C). Furthermore, it is demonstrated that multicomponent coating, such as (Pr,Ce)Ox, can also be obtained with this method. Overall, the observations offer a promising route for the development of high-performance solid oxide fuel cells.

16.
ACS Appl Bio Mater ; 7(3): 1621-1642, 2024 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-38430188

RESUMEN

Here, iron chalcogenide thin films were developed for the first time by using the less hazardous electrodeposition technique at optimized conditions on an FTO glass substrate. The chalcogenides have different surface, morphological, structural, and optical properties, as well as an enzyme-free sensing behavior toward urea. Numerous small crystallites of about ∼20 to 25 nm for FeSe, ∼18 to 25 nm for FeTe, and ∼18 to 22 nm in diameter for FeSeTe are observed with partial agglomeration under an electron microscope, having a mixed phase of tetragonal and orthorhombic structures of FeSe, FeTe, and, FeSeTe, respectively. Profilometry, XRD, FE-SEM, HR-TEM, XPS, EDX, UV-vis spectroscopy, and FT-IR spectroscopy were used for the analysis of binary and ternary composite semiconductors, FeSe, FeTe, and FeSeTe, respectively. Electrochemical experiments were conducted with the chalcogenide thin films and urea as the analyte in phosphate-buffered media at a pH of ∼ 7.4 in the concentration range of 3-413 µM. Cyclic voltammetry was performed to determine the sensitivity of the prepared electrode at an optimized scan rate of 50 mV s-1. The electrodeposited chalcogenide films appeared with a low detection limit and satisfactory sensitivity, of which the ternary chalcogenide film has the lowest LOD of 1.16 µM and the maximum sensitivity of 74.22 µA µM-1 cm-2. The transition metal electrode has a very wide range of detection limit of 1.25-2400 µM with a short response time of 4 s. This fabricated biosensor is capable of exhibiting almost 75% of its starting activity after 2 weeks of storage in the freezer at 4 °C. Simple methods of preparation, a cost-effective process, and adequate electrochemical sensing of urea confirm that the prepared sensor is suitable as an enzyme-free urea sensor and can be utilized for future studies.


Asunto(s)
Calcógenos , Hierro , Urea/análisis , Espectroscopía Infrarroja por Transformada de Fourier , Calcógenos/química
17.
BMC Chem ; 18(1): 32, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355555

RESUMEN

In this work, Fabrication, and characterization of Cu-doped ZnO thin films deposited on porous silicon (PSi) substrates have been reported using electrochemical deposition (ECD) technique. The influence of Cu-doping concentrations on morphology, structure, and electrical characteristics of zinc oxide (ZnO) thin films were presented. X-ray diffraction analysis (XRD) has been used to characterize the lattice constants, average size, in-plane (along a-axis) and out of plane (along c-axis) strains for the Cu-ZnO crystals. The effects of Cu-doping concentration on crystal parameters were also investigated from the XRD analysis. The samples were used for UV-sensing applications. In addition, Cu-doped ZnO and pure ZnO metal-semiconductor-metal photodetector, with Cu as electrode contacts were successfully produced for ultraviolet (UV) detection. The I-V (current-voltage) characteristics were used to study the sensing enhancement. Finally, the UV photodetector based on Cu-doped ZnO films was successfully fabricated and shows a five times enhancement in the sensitivity to UV light compared to that of pure ZnO photodetector.

18.
Small ; 20(30): e2400038, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38402430

RESUMEN

Development of synthetic strategies selectively yielding single crystals is desired owing to the facet-dependent chemical reactivities. Recent advances in electrochemical materials synthesis yielded nanomaterials that are surfactant-free, however, typically in polycrystalline forms. In this work, an electrochemical synthetic strategy selectively yielding single-crystalline nanoparticles by implementation of surface-selective heating of the working electrode is developed. Single crystals of copper, silver, gold, and platinum are afforded, and the crystallinity verified by electron diffraction and chemical reactivity studies. Notably, Cu (100) surface prepared by electrochemical synthesis yielded high single product selectivity when applied to electrochemical CO2 reduction catalysis.

19.
J Mech Behav Biomed Mater ; 151: 106366, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38176198

RESUMEN

Iodine-containing coatings were prepared on pure Ti surfaces via electrochemical deposition to enhance their antibacterial properties. The factors influencing iodine content were analyzed using an orthogonal experiment. The electrochemically deposited samples were characterized using scanning electron microscopy with energy dispersive spectroscopy and X-ray photoelectron spectroscopy, and their antibacterial properties and cytotoxicity were evaluated. The results showed that changing the deposition time is an effective way to control the iodine content. The iodine content, coating thickness, and adhesion of the samples increased with deposition time. Iodine in the coatings mainly exists in three forms, which are I2, I3-, and pentavalent iodine. For samples with iodine-containing coatings, the antibacterial ratios against E. coli and S. aureus were greater than 90% and increased with increasing iodine content. Although the samples with iodine-containing coatings showed some inhibition of the proliferation of MC3T3-E1 cells, the cell viabilities were all higher than 80%, suggesting that iodine-containing coatings are biosafe.


Asunto(s)
Materiales Biocompatibles Revestidos , Yodo , Materiales Biocompatibles Revestidos/farmacología , Materiales Biocompatibles Revestidos/química , Yodo/farmacología , Staphylococcus aureus , Escherichia coli , Titanio/farmacología , Antibacterianos/farmacología , Propiedades de Superficie
20.
ACS Appl Mater Interfaces ; 16(3): 3460-3475, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38224570

RESUMEN

Electrochemical water oxidation is believed to be an effective pathway to produce clean, carbon-free, and environmentally sustainable green energy. In this work, we report a simple, easy-to-construct, facile, low-cost, and single-step galvanic technique to synthesize a Pd-supported temperature-assisted MoOx thin film nanocomposite for effective water oxidation. The most suitable nanocomposite exhibits very low overpotential at 10 mA/cm2 with smaller Tafel slope values for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) processes in an alkaline medium. The formation of a metal oxide-metal junction accelerates the growth of more active sites, promoting induced electronic synergism at the MoOx-Pd interface. This endows higher electrical conductivity and faster electron transfer kinetics, thus accelerating the faster water dissociation reaction following the Tafel-Volmer mechanism to boost the HER process in an alkaline medium. The excellent electrochemical HER and OER performances of our electrocatalyst even supersede the accomplishments of the benchmark catalysts Pt/C and RuO2. Moreover, neither of these two catalysts demonstrates both catalytic reactions, i.e., HER and OER at the same time, which have been observed for our synthesized catalyst. Our findings illustrate the potential of a thin-film MoOx-Pd nanocomposite to be an exceedingly effective electrocatalyst developed by interface engineering strategies. This also provides insight into designing several other semiconductor composite catalysts using simple synthesis techniques for highly efficient HER/OER processes that could be alternatives to benchmark electrocatalysts for water electrolysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA