Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(16)2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39204734

RESUMEN

Understanding the settling preference, feeding behavior, honeydew production, and biophysical factors, such as trichome density, related to Y. flavovittatus leafhopper infestation in sugarcane cultivation is crucial for effective pest management strategies. This study investigated these aspects across nine sugarcane cultivars. Significant variability was observed among cultivars in terms of settling behavior, with KK3 and LK92-11 showing the highest number of settled leafhopper adults. Similarly, honeydew production varied significantly among cultivars, with KK3 and LK92-11 exhibiting the highest production. Employing the electrical penetration graph (EPG) technique provided insights into distinct probing behaviors across cultivars, highlighting correlations between settling preference, honeydew production, and specific EPG waveforms. Principal component analysis (PCA) categorized cultivars into four groups based on settling preference, honeydew production, feeding behavior, and biophysical factors. Strong correlations were found between settling preference, honeydew production, and various EPG waveforms, while negative correlations were observed with the number of silica cells and rows per unit area, indicating their potential role in deterring leafhopper settlement. We concluded that TPJ04-768 and K84-200 are promising for resistance against leafhoppers and, thereby, can be exploited in sugarcane breeding programs with regard to resistance against insects.

2.
Int J Mol Sci ; 25(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38732039

RESUMEN

Hesperidin is a highly bioactive natural flavonoid whose role in ecological interactions is poorly known. In particular, the effects of hesperidin on herbivores are rarely reported. Flavonoids have been considered as prospective biopesticides; therefore, the aim of the present study was to examine the influence of hesperidin on the host plant selection behavior of three aphid (Hemiptera: Aphididae) species: Acyrthosiphon pisum Harrris, Rhopalosiphum padi (L.), and Myzus persicae (Sulz.). The aphid host plants were treated with 0.1% and 0.5% ethanolic solutions of hesperidin. Aphid probing behavior in the no-choice experiment was monitored using electropenetrography and aphid settling on plants in the choice experiment was recorded. The results demonstrated that hesperidin can be applied as a pre-ingestive, ingestive, and post-ingestive deterrent against A. pisum, as an ingestive deterrent against R. padi, and as a post-ingestive deterrent against M. persicae using the relatively low 0.1% concentration. While in A. pisum the deterrent effects of hesperidin were manifested as early as during aphid probing in peripheral plant tissues, in M. persicae, the avoidance of plants was probably the consequence of consuming the hesperidin-containing phloem sap.


Asunto(s)
Áfidos , Hesperidina , Áfidos/efectos de los fármacos , Áfidos/fisiología , Animales , Hesperidina/farmacología , Hesperidina/química , Especificidad de la Especie , Conducta Alimentaria/efectos de los fármacos , Herbivoria/efectos de los fármacos , Conducta Animal/efectos de los fármacos
3.
Pest Manag Sci ; 80(7): 3684-3690, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38459962

RESUMEN

BACKGROUND: The Southern rice black-streaked dwarf virus (SRBSDV) transmitted by Sogatella furcifera constitutes a threat to sustainable rice production. However, most rice varieties are highly vulnerable to SRBSDV, whereas the occurrence of the viral disease varies significantly under field conditions. This study aimed to evaluate the potential of rice varietal resistance to S. furcifera in reducing SRBSDV transmission. RESULTS: Among the five rice varieties, Zhongzheyou8 and Deyou108 exhibited high resistance to S. furcifera, Baixiangnuo33 was susceptible, and TN1 and Diantun502 were highly susceptible. The S. furcifera generally showed non-preference for and low feeding on the Zhongzheyou8 and Deyou108 plants, which may explain the resistance of these varieties to S. furcifera. Transmission of SRBSDV by S. furcifera was significantly impaired on the resistant varieties, both inoculation and acquisition rates were much lower on Zhongzheyou8 than on TN1. The short durations of S. furcifera salivation and phloem-related activities and the low S. furcifera feeding amount may explain the reduced SRBSDV inoculation and acquisition rates associated with Zhongzheyou8. Spearman's rank correlation revealed a significant negative correlation between S. furcifera resistance and SRBSDV transmission among the tested varieties. CONCLUSION: The results indicate that rice varietal resistance to the vector S. furcifera hinders SRBSDV transmission, which is largely associated with the host plant selection and feeding behaviors of the vector. The current findings shed light on the management of the SRBSDV viral disease through incorporation of S. furcifera resistant rice varieties in the management protocol. © 2024 Society of Chemical Industry.


Asunto(s)
Hemípteros , Oryza , Enfermedades de las Plantas , Oryza/virología , Enfermedades de las Plantas/virología , Animales , Hemípteros/virología , Hemípteros/fisiología , Insectos Vectores/virología , Insectos Vectores/fisiología , Resistencia a la Enfermedad , Reoviridae/fisiología , Virus de Plantas/fisiología
4.
Pest Manag Sci ; 80(2): 797-804, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37794233

RESUMEN

BACKGROUND: The transmission of plant viruses is closely associated with the specific probing behaviors of the vectors. Pymetrozine is a pyridine azomethine insecticide that interferes with nervous regulation of feeding behavior of piercing-sucking insects. This study aimed to evaluate the potential of sublethal concentrations of pymetrozine in reducing the transmission of Southern rice black-streaked dwarf virus (SRBSDV) by the planthopper Sogatella furcifera. RESULTS: Laboratory assays showed that both acquisition and inoculation rates of SRBSDV decreased significantly in the planthoppers feeding on plants treated with lethal concentrations 10% and 50% (LC10 and LC50 ) pymetrozine compared with the insects feeding on the control plants, for which significant effects of pymetrozine concentration and time post-treatment were detected. Honeydew excretion of the planthoppers showed significant reduction with increasing concentration of the insecticide but no significant association with time post-treatment. Electrical penetration graph recordings revealed that total durations of each waveform in both acquisition and inoculation were significantly affected by pymetrozine treatment, with total durations of non-probing (NP), penetration initiation (N1), and extracellular activity (N3) elongated whereas those of salivation (N2) and phloem-related activities (N4-a and N4-b) shortened. Additionally, both acquisition and inoculation rates were significantly lower at 168 h than at 6 h post-treatment. CONCLUSION: The results indicate that sublethal concentrations of pymetrozine reduce SRBSDV transmission, which is associated with reduction in feeding and alteration in probing behaviors characterized by the prolonged non-probing, penetration initiation and extracellular activity and shortened salivation and phloem-related activities. © 2023 Society of Chemical Industry.


Asunto(s)
Hemípteros , Insecticidas , Oryza , Reoviridae , Triazinas , Animales , Insectos Vectores , Hemípteros/fisiología , Enfermedades de las Plantas/prevención & control
5.
Pest Manag Sci ; 79(10): 4034-4047, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37287215

RESUMEN

BACKGROUND: Phenacoccus solenopsis is a polyphagous invasive mealybug that caused serious damage to crops worldwide. Phloem-sucking hemipterans are known to carry symbiotic microbes in their saliva. However, the role of salivary bacteria of P. solenopsis in modulating plant defenses remains limited. Exploring the impact of salivary bacteria on plant defense responses will contribute to the development of new targets for efficient control of invasive mealybugs. RESULTS: Salivary bacteria of the invasive mealybug P. solenopsis can suppress herbivore-induced plant defenses and thus enhance mealybug fitness. Mealybugs treated with an antibiotic showed decreased weight gain, fecundity and survival. Untreated mealybugs suppressed jasmonic acid (JA)-regulated defenses but activated salicylic acid (SA)-regulated defenses in cotton plants. In contrast, antibiotic-treated mealybugs triggered JA-responsive gene expression and JA accumulation, and showed shortened phloem ingestion. Reinoculating antibiotic-treated mealybugs with Enterobacteriaceae or Stenotrophomonas cultivated from mealybug saliva promoted phloem ingestion and fecundity, and restored the ability of mealybugs to suppress plant defenses. Fluorescence in situ hybridization visualization revealed that Enterobacteriaceae and Stenotrophomonas colonize salivary glands and are secreted into the mesophyll cells and phloem vessels. Exogenous application of the bacterial isolates to plant leaves inhibited JA-responsive gene expression and activated SA-responsive gene expression. CONCLUSION: Our findings imply that symbiotic bacteria in the saliva of the mealybug play an important role in manipulating herbivore-induced plant defenses, enabling this important pest to evade induced plant defenses and promoting its performance and destructive effects on crops. © 2023 Society of Chemical Industry.


Asunto(s)
Hormigas , Hemípteros , Animales , Hibridación Fluorescente in Situ , Hemípteros/fisiología , Herbivoria , Ácido Salicílico/farmacología , Ácido Salicílico/metabolismo , Antibacterianos/farmacología , Hormigas/metabolismo , Bacterias , Enterobacteriaceae/metabolismo
6.
Plant Sci ; 330: 111646, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36806611

RESUMEN

Sugarcane aphid (SCA; Melanaphis sacchari) is a devastating pest of sorghum (Sorghum bicolor) that colonizes sorghum plants at different growth stages. Leaf surface characteristics and sugars often influence aphid settling and feeding on host plants. However, how changes in cuticular waxes and sugar levels affect SCA establishment and feeding at different development stages of sorghum have not been explored. In this study, two- and six-week-old BTx623 plants, a reference line of sorghum, was used to evaluate plant-aphid interactions. Monitoring aphid feeding behavior using Electrical Penetration Graph (EPG) technique revealed that aphids spent more time in the sieve element phase of six-week-old plants compared to two-week-old plants. Significant differences were found in the time spent to reach the first sieve element and pathway phases between the two- and six-week-old plants. However, no-choice aphid bioassays displayed that SCA population numbers were higher in two-week-old plants compared to six-week-old plants. Differences in the abundance of wax and sugar contents were analyzed to determine how these plant components influenced aphid feeding and proliferation. Among the cuticular wax compounds analyzed, α-amyrin and isoarborinone increased after 10 days of aphid infestation only in six-week-old plants. Trehalose content was significantly increased by SCA feeding on two- and six-week-old plants. Furthermore, SCA feeding depressed sucrose content and increased levels of glucose and fructose in two-week-old but not in six-week-old plants. Overall, our study indicates that plant age is a determinant for SCA feeding, and subtle changes in triterpenoids and available sugars influence SCA establishment on sorghum plants.


Asunto(s)
Áfidos , Saccharum , Sorghum , Animales , Azúcares , Grano Comestible
7.
Planta ; 257(1): 22, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36538118

RESUMEN

MAIN CONCLUSION: Quantification of cuticular waxes coupled with insect bioassays and feeding behavior analysis demonstrate that long-chain C32 fatty alcohol impacts host plant selection by aphids. Cuticular waxes constitute the first point of contact between plants and their environment, and it also protect plants from external stresses. However, the role of waxes in Sorghum bicolor (sorghum) against sugarcane aphid (Melanaphis sacchari), a relatively new and devastating pest of sorghum in the U.S., is not fully understood. In this study, we monitored sugarcane aphid behavior on two genotypes of young sorghum plants with different wax chemistry: a wild-type plant (bloom) with lower C32 alcohol cuticular wax, and a mutant plant (bloomless) with 1.6 times the amount of wax compared to wild-type plants. No-choice aphid bioassays revealed that sugarcane aphid reproduction did not vary between wild-type and the bloomless plants. Electrical Penetration Graph (EPG) monitoring indicated that the sugarcane aphids spent comparable amount of time feeding from the sieve elements of the wild-type and bloomless plants. However, aphids spent more time feeding on the xylem sap of the bloomless plants compared to the wild-type plants. Furthermore, aphid choice assays revealed that the sugarcane aphids preferred to settle on bloomless compared to wild-type plants. Overall, our results suggest that cuticular waxes on young sorghum leaves play a critical role in influencing host plant selection by sugarcane aphids.


Asunto(s)
Áfidos , Saccharum , Sorghum , Animales , Sorghum/genética , Ceras , Conducta Alimentaria , Grano Comestible
8.
Pest Manag Sci ; 78(11): 4841-4849, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35908181

RESUMEN

BACKGROUND: Insecticides are essential, though controversial tools in modern pest management. Insecticides can slow the spread of key vector-borne plant pathogens, but often lead to inconsistent results given that insecticide use is generally focused on acute toxicity under no-choice conditions. Here, we analysed the lethal (survival) and sublethal (feeding behaviour) effects of six commercial products (acetamiprid, deltamethrin, spinosad, sulfoxaflor, pyrethrin and kaolin) on Philaenus spumarius, vector of the bacterium Xylella fastidiosa. Furthermore, we assessed the impact of insecticides displaying different degrees of acute toxicity against spittlebugs (highest to lowest: acetamiprid, pyrethrin and kaolin) on the transmission of X. fastidiosa by P. spumarius under both free-choice and no-choice conditions. RESULTS: Deltamethrin, acetamiprid and to a limited extent pyrethrin significantly altered the feeding behaviour of P. spumarius. Deltamethrin and acetamiprid were highly toxic against P. spumarius, but the mortality induced by exposure to pyrethrin was limited overall. By contrast, spinosad, sulfoxaflor and kaolin did not significantly impact P. spumarius feeding behaviour or survival. Under no-choice conditions, both pyrethrin and acetamiprid reduced the X. fastidiosa inoculation rate compared with kaolin and the control. On the other hand, pyrethrin reduced transmission, but acetamiprid failed to significantly affect bacterial inoculation under free-choice conditions. CONCLUSION: Pyrethrin was the only compound able to reduce X. fastidiosa transmission under both free-choice and no-choice conditions. Xylella fastidiosa management strategy based exclusively on the evaluation of insecticide acute toxicity under no-choice conditions would most likely fail to prevent, or slow, bacterial spread. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Hemípteros , Insecticidas , Piretrinas , Animales , Conducta Alimentaria , Hemípteros/microbiología , Insecticidas/farmacología , Caolín , Nitrilos , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Piridinas , Compuestos de Azufre , Xylella
9.
Plant Sci ; 320: 111289, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35643611

RESUMEN

Sugarcane aphid (SCA; Melanaphis sacchari Zehntner) is a key piercing-sucking pest of sorghum (Sorghum bicolor) that cause significant yield losses. While feeding on host plants, complex signaling networks are invoked from recognition of insect attack to induction of plant defenses. Consequently, these signaling networks lead to the production of insecticidal compounds or limited access of nutrients to insects. Previously, several studies were published on the transcriptomics analysis of sorghum in response to SCA infestation, but no information is available on the physiological changes of sorghum at the proteome level. We used the SCA resistant sorghum genotype SC265 for the global proteomics analysis after 1 and 7 days of SCA infestation using the TMT-plex technique. Peptides matching a total of 4211 proteins were identified and 158 proteins were differentially expressed at day 1 and 7. Overall, proteome profiling of SC265 after SCA infestation at days 1 and 7 revealed the suppression of plant defense-related proteins and upregulation of plant defense and signaling-related proteins, respectively. The plant defense responses based on proteome data were validated using electrical penetration graph (EPG) technique to observe changes in aphid feeding. Feeding behavior analyses revealed that SCA spent significantly longer time in phloem phase on SCA infested plants for day 1 and lesser time in day 7 SCA infested sorghum plants, compared to their respective control plants. Overall, our study provides insights into underlying mechanisms that contribute to sorghum resistance to SCA.


Asunto(s)
Áfidos , Saccharum , Sorghum , Animales , Áfidos/fisiología , Grano Comestible , Proteoma , Sorghum/genética
10.
Pest Manag Sci ; 77(7): 3233-3240, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33728797

RESUMEN

BACKGROUND: Plant viruses are transmitted mainly by piercing-sucking herbivores, and viral disease management relies on chemical control of vectors. Southern rice black-streaked dwarf virus (SRBSDV) is transmitted by the white-backed planthopper (WBPH), Sogatella furcifera. This study aimed to evaluate the potential of silicon (Si) amendment for reducing SRBSDV transmission. RESULTS: The settling and ovipositional preferences of WBPH females decreased significantly by 14.6-43.7% for plants treated with either 0.16 g or 0.32 g SiO2  kg-1 soil during SRBSDV acquisition and by 26.2-28.3% for plants treated with 0.32 g SiO2  kg-1 soil during SRBSDV inoculation, compared with controls. Adding either 0.16 or 0.32 g SiO2  kg-1 soil significantly reduced SRBSDV inoculation rate by 31.3% and 45.3%, respectively, and acquisition rate by 25.5% and 66.0%, respectively. Silicification was intensified more in plants treated with 0.32 g SiO2  kg-1 soil than in controls. The nonprobing (np) duration increased, and the phloem sap ingestion (N4-b) duration decreased significantly in the WBPHs feeding on high-rate-Si-supplemented plants compared with control plants during both inoculation and acquisition access. CONCLUSION: This study showed that Si amendment to rice plants decreased the WBPH settling and ovipositional preference and the SRBSDV acquisition and inoculation rates, thereby reducing SRBSDV transmission. The intensified plant silicification and the altered WBPH feeding behaviors (i.e. prolonged np and shortened N4-b) may explain the reduced SRBSDV transmission in Si-amended plants. © 2021 Society of Chemical Industry.


Asunto(s)
Hemípteros , Oryza , Animales , Femenino , Insectos Vectores , Enfermedades de las Plantas , Reoviridae , Silicio/farmacología , Dióxido de Silicio
11.
Pest Manag Sci ; 77(6): 2870-2886, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33554424

RESUMEN

BACKGROUND: Triflumezopyrim (TFM), a novel mesoionic insecticide, has high efficiency at a low dosage, and is mainly used to control hopper species. A previous study demonstrated that seed dressing with TFM effectively controlled rice planthopper populations in mechanically transplanted rice fields; however, mode of action for control was unclear. RESULTS: The study shows that seed dressing with TFM resulted in elevated levels of oxalic acid, flavonoids, phenolic substances, callose and other compounds associated with Nilaparvata lugens resistance in rice plants, and low TFM residue content in rice plant stem and grain. Host choice behavioral experiments showed that N. lugens females prefer feeding on untreated rice plants. Electrical penetration graph (EPG) data showed that seed dressing with TFM at medium and high doses significantly prolonged the non-probing period and inhibited phloem ingestion in N. lugens females. These changes led to a significant decrease in female secretion of honeydew, expression of genes encoding vitellogenin and juvenile hormone acid methyltransferase, body weight and longevity, and significantly influenced several physiological parameters resulting in impaired oocyte growth, fecundity and population. Field survey data showed that seed dressing with TFM was efficacious and relatively durable in protecting rice plants from infestation by planthoppers. CONCLUSION: This study revealed that seed dressing with TFM enhances rice plant resistance to N. lugens by limiting phloem ingestion and increasing the N. lugens non-probing period; this leads to reduced fecundity of females and lowers N. lugens numbers in the field. © 2021 Society of Chemical Industry.


Asunto(s)
Hemípteros , Oryza , Animales , Vendajes , Conducta Alimentaria , Femenino , Fertilidad , Piridinas , Pirimidinonas , Semillas
12.
Plants (Basel) ; 9(7)2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32679858

RESUMEN

The majority of plant viruses depend on Hemipteran vectors for their survival and spread. Effective management of these insect vectors is crucial to minimize the spread of vector-borne diseases, and to reduce crop damage. The aim of the present study was to evaluate the effect of various systemic insecticides on the feeding behavior of Bemisia tabaci and Myzus persicae, as well as their ability to interfere with the transmission of circulative viruses. The obtained results indicated that some systemic insecticides have antifeeding properties that disrupt virus transmission by their insect vectors. We found that some of the tested insecticides significantly reduced phloem contact and sap ingestion by aphids and whiteflies, activities that are closely linked to the transmission of phloem-limited viruses. These systemic insecticides may play an important role in reducing the primary and secondary spread of tomato yellow leaf curl virus (TYLCV) and turnip yellows virus (TuYV), transmitted by B. tabaci and M. persicae, respectively.

13.
J Insect Physiol ; 122: 104025, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32059835

RESUMEN

Cyclotides are defense peptides produced by several plant families. Viola spp. (Violaceae) produce an array of cyclotides with varying biological activities. The peach potato aphid Myzus persicae (Sulz.) (Hemiptera: Aphididae) is a generalist that feeds on the secondary hosts of over 40 plant families, including Violaceae. The present work aimed to evaluate the activities of cycloviolacins from Viola odorata L. and V. ulignosa Besser (cyO2, cyO3, cyO13, cyO19) against M. persicae. To investigate the peptides' influence on aphid feeding behavior, we used 20% sucrose diets supplemented with cyclotides and measured the effects with electrical penetration graph (EPG) technique. We also applied anti-cyclotide antibodies and immunohistochemistry to track the peptides in the digestive systems of the aphids. Our study shows that cyclotides affect aphid probing and feeding behavior and limit their diet sap uptake. The cycloviolacin cyclotides: cyO13 (100 µM) and cyO19 (50 µM) most strongly impeded aphid ingestion activities when applied in sucrose diet. Sustained ingestion of the diet was blocked by 100 µM cyO13, and no aphid showed ingestion of the diet for longer than 10 min. Cyclotides were detected in the pharynx, in contact with the epipharyngeal gustatory organ, in the stomach (midgut) and upper intestine. The present study shows the deterrent activity of cycloviolacins on M. persicae. This activity may be related to the peptides' effects on epithelial cells and gustatory organs along the aphid digestive system. We demonstrate that cyclotides may play an important role in plant-aphid interactions.


Asunto(s)
Áfidos , Ciclotidas/farmacología , Conducta Alimentaria/efectos de los fármacos , Defensa de la Planta contra la Herbivoria , Viola/metabolismo , Animales , Áfidos/efectos de los fármacos , Áfidos/fisiología , Sistema Digestivo/efectos de los fármacos , Tracto Gastrointestinal/efectos de los fármacos , Inmunohistoquímica/métodos , Control de Insectos/métodos , Mucosa Intestinal/efectos de los fármacos , Percepción del Gusto/efectos de los fármacos
14.
Insect Sci ; 27(1): 99-112, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30039604

RESUMEN

This study sheds light on a poorly understood area in insect-plant-microbe interactions, focusing on aphid probing and feeding behavior on plants with varying levels of arbuscular mycorrhizal (AM) fungus root colonization. It investigates a commonly occurring interaction of three species: pea aphid Acyrthosiphon pisum, barrel medic Medicago truncatula, and the AM fungus Rhizophagus irregularis, examining whether aphid-feeding behavior changes when insects feed on plants at different levels of AM fungus colonization (42% and 84% root length colonized). Aphid probing and feeding behavior was monitored throughout 8 h of recording using the electrical penetration graph (EPG) technique, also, foliar nutrient content and plant growth were measured. Summarizing, aphids took longer to reach their 1st sustained phloem ingestion on the 84% AM plants than on the 42% AM plants or on controls. Less aphids showed phloem ingestion on the 84% AM plants relative to the 42% AM plants. Shoots of the 84% AM plants had higher percent carbon (43.7%) relative to controls (40.5%), and the 84% AM plants had reduced percent nitrogen (5.3%) relative to the 42% AM plants (6%). In conclusion, EPG and foliar nutrient data support the hypothesis that modifications in plant anatomy (e.g., thicker leaves), and poor food quality (reduced nitrogen) in the 84% AM plants contribute to reduced aphid success in locating phloem and ultimately to differences in phloem sap ingestion. This work suggests that M. truncatula plants benefit from AM symbiosis not only because of increased nutrient uptake but also because of reduced susceptibility to aphids.


Asunto(s)
Áfidos/fisiología , Herbivoria , Medicago truncatula/microbiología , Medicago truncatula/fisiología , Micorrizas/fisiología , Animales , Antibiosis , Conducta Alimentaria , Nutrientes/análisis , Hojas de la Planta/fisiología
15.
J Exp Bot ; 70(15): 4011-4026, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31173098

RESUMEN

Aphids, including the bird cherry-oat aphid (Rhopalosiphum padi), are significant agricultural pests. The wild relative of barley, Hordeum spontaneum 5 (Hsp5), has been described to be partially resistant to R. padi, with this resistance proposed to involve higher thionin and lipoxygenase gene expression. However, the specificity of this resistance to aphids and its underlying mechanistic processes are unknown. In this study, we assessed the specificity of Hsp5 resistance to aphids and analysed differences in aphid probing and feeding behaviour on Hsp5 and a susceptible barley cultivar (Concerto). We found that partial resistance in Hsp5 to R. padi extends to two other aphid pests of grasses. Using the electrical penetration graph technique, we show that partial resistance is mediated by phloem- and mesophyll-based resistance factors that limit aphid phloem ingestion. To gain insight into plant traits responsible for partial resistance, we compared non-glandular trichome density, defence gene expression, and phloem composition of Hsp5 with those of the susceptible barley cultivar Concerto. We show that Hsp5 partial resistance involves elevated basal expression of thionin and phytohormone signalling genes, and a reduction in phloem quality. This study highlights plant traits that may contribute to broad-spectrum partial resistance to aphids in barley.


Asunto(s)
Áfidos/patogenicidad , Hordeum/metabolismo , Hordeum/parasitología , Células del Mesófilo/metabolismo , Células del Mesófilo/parasitología , Floema/metabolismo , Floema/parasitología , Enfermedades de las Plantas/parasitología , Animales , Regulación de la Expresión Génica de las Plantas
16.
Environ Entomol ; 48(4): 935-944, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31116399

RESUMEN

In the current context of global climate change, atmospheric carbon dioxide (CO2) concentrations are continuously rising with potential influence on plant-herbivore interactions. The effect of elevated CO2 (eCO2) on feeding behavior of corn leaf aphid, Rhopalosiphum maidis (Fitch) on barley seedlings Hordeum vulgare L. was tracked using electrical penetration graph (EPG). The nutrient content of host plant and the developmental indexes of aphids under eCO2 and ambient CO2 (aCO2) conditions were also investigated. Barley seedlings under eCO2 concentration had lower contents of crude protein and amino acids. EPG analysis showed the plants cultivated under eCO2 influenced the aphid feeding behavior, by prolonging the total pre-probation time of the aphids (wandering and locating the feeding site) and the ingestion of passive phloem sap. Moreover, fresh body weight, fecundity and intrinsic population growth rate of R. maidis was significantly decreased in eCO2 in contrast to aCO2 condition. Our findings suggested that changes in plant nutrition caused by eCO2, mediated via the herbivore host could affect insect feeding behavior and population dynamics.


Asunto(s)
Áfidos , Animales , Dióxido de Carbono , Floema , Hojas de la Planta , Zea mays
17.
J Insect Sci ; 19(3)2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-31087083

RESUMEN

Insect vector behavior and biology can be affected by pathogen-induced changes in the physiology and morphology of the host plant. Herein, we examined the temporal effects of Squash vein yellowing virus (family Potyviridae, genus Ipomovirus) infection on the settling, oviposition preference, and feeding behavior of its whitefly vector, Bemisia tabaci (Gennadius) Middle East-Asia Minor 1 (MEAM1), formerly known as B. tabaci biotype B. Settling and oviposition behavioral choice assays were conducted on pairs of infected and mock-inoculated watermelon (Citrullus lanatus (Thunb) Matsum and Nakai) (Cucurbitales: Cucurbitaceae) at 5-6 days post inoculation (DPI) and 10-12 DPI. Electropenetrography, or electrical penetration graph (both abbreviated EPG), was used to assess differences in feeding behaviors of whitefly on mock-inoculated, 5-6 and 10-12 DPI infected watermelon plants. Whiteflies showed no preference in settling or oviposition on the infected and mock-inoculated plants at 5-6 DPI. However, at 10-12 DPI, whiteflies initially settled on infected plants but then preference of settling shifted to mock-inoculated plants after 8 h. Only at 10-12 DPI, females laid significantly more eggs on mock-inoculated plants than infected plants. EPG revealed no differences in whitefly feeding behaviors among mock-inoculated, 5-6 DPI infected and 10-12 DPI infected plants. The results highlighted the need to examine plant disease progression and its effect on vector behavior and performance, which could play a crucial role in Squash vein yellowing virus spread.


Asunto(s)
Conducta Alimentaria , Hemípteros/fisiología , Hemípteros/virología , Potyviridae/fisiología , Animales , Citrullus/parasitología , Citrullus/virología , Electrofisiología/métodos , Femenino , Insectos Vectores/fisiología , Insectos Vectores/virología , Oviposición/fisiología , Enfermedades de las Plantas/virología
18.
J Econ Entomol ; 112(3): 1314-1321, 2019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-30753639

RESUMEN

Acetamiprid and imidacloprid are two important neonicotinoid insecticides that are widely utilized under field conditions for the management of sucking insect pests, including the solenopsis mealybug Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae). Although some information is available regarding their lethal effects, nothing is currently known about the sublethal effects of these insecticides. We, therefore, performed a series of experiments to test the lethal and sublethal effects of these chemicals on oviposition duration and fecundity. We also assessed sublethal effects on feeding behavior using the electrical penetration graph (EPG) technique. The results of this study reveal that acetamiprid toxicity is higher than imidacloprid and that both insecticides have negative effects on the oviposition, fecundity, and feeding behavior of P. solenopsis when applied at sublethal dosages. These chemicals also significantly reduce oviposition duration and fecundity and significantly prolong nonprobing duration, increase penetration problems, and reduce phloem and xylem feeding activities when compared with adults exposed to just water. No significant differences were detected in all waveform durations and events when adults previously exposed to foliage treated with each of these two insecticides were compared. The results of this study, therefore, suggest that both insecticides are capable of protecting crops from mealybug damage by not only killing these pests directly but also reducing their fecundity and inhibiting feeding behaviors when applied at sublethal dosages.


Asunto(s)
Hemípteros , Insecticidas , Solanum lycopersicum , Animales , Femenino , Neonicotinoides , Oviposición
19.
Insect Sci ; 24(5): 743-752, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27168374

RESUMEN

Aphis gossypii Glover (Hemiptera: Aphididae) is a key pest in cotton crops, notably owing to its increasing resistance to commonly used pesticides. Such resistance prompts for the development of integrated pest management (IPM) programs that include novel pesticides being effective against the aphid. In the present study, we assessed lethal and sublethal effects of cycloxaprid, a novel chiral neonicotinoid pesticide developed in China, on A. gossypii. The lethal concentration at 50% (LC50 ) value of cycloxaprid on A. gossypii was estimated, using the dipping method, at 7.73 mg/L. The impact of a sublethal concentration (LC10 ) and a lethal concentration (LC40 ) of cycloxaprid on A. gossypii population growth and feeding behavior (using electrical penetration graph technique [EPG]), and its transgenerational effect were further assessed. Adult longevity and fecundity significantly decreased after exposure to LC40 or LC10 of cycloxaprid. Cycloxaprid with sublethal concentrations (especially LC40 ) had negative effects on phloem ingestion by A. gossypii. Additionally, the offspring of the adults exposed to LC40 of cycloxaprid had shorter nymphal development duration and adult longevity than the control, and those from LC10 and LC40 treatments had lower adult fecundity and net productive rate. We demonstrated that cycloxaprid is a pesticide showing both lethal and sublethal activities, and transgenerational effects on A. gossypii; it may be useful for implementation in IPM programs against this aphid pest.


Asunto(s)
Áfidos/efectos de los fármacos , Compuestos Heterocíclicos con 3 Anillos/toxicidad , Insecticidas/toxicidad , Piridinas/toxicidad , Animales , Conducta Alimentaria/efectos de los fármacos , Fertilidad/efectos de los fármacos , Longevidad/efectos de los fármacos , Pruebas de Toxicidad
20.
New Phytol ; 203(2): 674-684, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24716546

RESUMEN

Plants propagate electrical signals in response to artificial wounding. However, little is known about the electrophysiological responses of the phloem to wounding, and whether natural damaging stimuli induce propagating electrical signals in this tissue. Here, we used living aphids and the direct current (DC) version of the electrical penetration graph (EPG) to detect changes in the membrane potential of Arabidopsis sieve elements (SEs) during caterpillar wounding. Feeding wounds in the lamina induced fast depolarization waves in the affected leaf, rising to maximum amplitude (c. 60 mV) within 2 s. Major damage to the midvein induced fast and slow depolarization waves in unwounded neighbor leaves, but only slow depolarization waves in non-neighbor leaves. The slow depolarization waves rose to maximum amplitude (c. 30 mV) within 14 s. Expression of a jasmonate-responsive gene was detected in leaves in which SEs displayed fast depolarization waves. No electrical signals were detected in SEs of unwounded neighbor leaves of plants with suppressed expression of GLR3.3 and GLR3.6. EPG applied as a novel approach to plant electrophysiology allows cell-specific, robust, real-time monitoring of early electrophysiological responses in plant cells to damage, and is potentially applicable to a broad range of plant-herbivore interactions.


Asunto(s)
Áfidos , Arabidopsis , Electrofisiología/métodos , Hojas de la Planta/fisiología , Animales , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Ciclopentanos , Conducta Alimentaria , Regulación de la Expresión Génica de las Plantas , Herbivoria , Potenciales de la Membrana , Proteínas Nucleares/genética , Oxilipinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA