Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Materials (Basel) ; 17(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39274623

RESUMEN

The aim is to reduce the elastic deformation of the web and side walls of low-stiffness thin-walled beams when the floating fixture method is used. This paper takes the number and position of fixture points as the optimization variables, establishes a calculation model of elastic deformation, and constructs the objective function of maximum total elastic deformation. An optimized solution utilizing the augmented multiplier method is employed, which forms the basis for the fixture layout optimization method to reduce the elastic deformation of low-stiffness thin-walled beams. A theoretical calculation, simulation analysis, and the fixture layout optimization of total maximum elastic deformation were completed using an aluminum alloy low-stiffness thin-walled beam as an example. The results show that based on the optimized layout, the average relative error between the calculated value and the simulated value of total maximum elastic deformation is 17.43%, and the simulated value of maximum elastic deformation is reduced by 48.49% after optimizing the fixture layout. The measured value is reduced by 0.02 mm on average, and deformation is reduced by 74.07%, which verifies the effectiveness of the floating fixture layout optimization control of machining elastic deformation proposed in this paper.

2.
J Imaging Inform Med ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164453

RESUMEN

The elasticity of soft tissues has been widely considered a characteristic property for differentiation of healthy and lesions and, therefore, motivated the development of several elasticity imaging modalities, for example, ultrasound elastography, magnetic resonance elastography, and optical coherence elastography to directly measure the tissue elasticity. This paper proposes an alternative approach of modeling the elasticity for prior knowledge-based extraction of tissue elastic characteristic features for machine learning (ML) lesion classification using computed tomography (CT) imaging modality. The model describes a dynamic non-rigid (or elastic) soft tissue deformation in differential manifold to mimic the tissues' elasticity under wave fluctuation in vivo. Based on the model, a local deformation invariant is formulated using the 1st and 2nd order derivatives of the lesion volumetric CT image and used to generate elastic feature map of the lesion volume. From the feature map, tissue elastic features are extracted and fed to ML to perform lesion classification. Two pathologically proven image datasets of colon polyps and lung nodules were used to test the modeling strategy. The outcomes reached the score of area under the curve of receiver operating characteristics of 94.2% for the polyps and 87.4% for the nodules, resulting in an average gain of 5 to 20% over several existing state-of-the-art image feature-based lesion classification methods. The gain demonstrates the importance of extracting tissue characteristic features for lesion classification, instead of extracting image features, which can include various image artifacts and may vary for different protocols in image acquisition and different imaging modalities.

3.
Materials (Basel) ; 17(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38793303

RESUMEN

The thermal expansion behavior of Cu plays a critical role in the bonding mechanism of Cu/SiO2 hybrid joints. In this study, artificial voids, which were observed to evolve using a focused ion beam, were introduced at the bonded interfaces to investigate the influence of compressive stress on bonding quality and mechanisms at elevated temperatures of 250 °C and 300 °C. The evolution of interfacial voids serves as a key indicator for assessing bonding quality. We quantified the bonding fraction and void fraction to characterize the bonding interface and found a notable increase in the bonding fraction and a corresponding decrease in the void fraction with increasing compressive stress levels. This is primarily attributed to the Cu film exhibiting greater creep/elastic deformation under higher compressive stress conditions. Furthermore, these experimental findings are supported by the surface diffusion creep model. Therefore, our study confirms that compressive stress affects the Cu-Cu bonding interface, emphasizing the need to consider the depth of Cu joints during process design.

4.
Materials (Basel) ; 17(10)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38793533

RESUMEN

In normal cold rolling, the elastic deformation of the strip is typically ignored because of the dominant plastic deformation. However, this neglect may introduce additional errors when the strip is very thin. The aim of this study is to investigate the characteristics of the deformation region and thickness reduction in the asymmetrical rolling of ultra-thin strips. Mathematical models were developed based on the slab method, with consideration of the elastic deformation of the strips, and employed in the simulation calculation. The percentage of the three zones and the thickness reduction were analyzed using the simulation results. An increase in the speed ratio results in an increase in the reduction ratio, which is influenced by parameters, such as front tension, back tension, friction coefficient, and entry thickness. The elastic deformation of the strip reduces the tension and the roll pressure and causes the reduction ratio to decrease. The findings and conclusions of this study may be helpful to the mill operating in the asymmetrical rolling process of ultra-thin strips.

5.
Sensors (Basel) ; 24(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732936

RESUMEN

Lung diseases are the third-leading cause of mortality in the world. Due to compromised lung function, respiratory difficulties, and physiological complications, lung disease brought on by toxic substances, pollution, infections, or smoking results in millions of deaths every year. Chest X-ray images pose a challenge for classification due to their visual similarity, leading to confusion among radiologists. To imitate those issues, we created an automated system with a large data hub that contains 17 datasets of chest X-ray images for a total of 71,096, and we aim to classify ten different disease classes. For combining various resources, our large datasets contain noise and annotations, class imbalances, data redundancy, etc. We conducted several image pre-processing techniques to eliminate noise and artifacts from images, such as resizing, de-annotation, CLAHE, and filtering. The elastic deformation augmentation technique also generates a balanced dataset. Then, we developed DeepChestGNN, a novel medical image classification model utilizing a deep convolutional neural network (DCNN) to extract 100 significant deep features indicative of various lung diseases. This model, incorporating Batch Normalization, MaxPooling, and Dropout layers, achieved a remarkable 99.74% accuracy in extensive trials. By combining graph neural networks (GNNs) with feedforward layers, the architecture is very flexible when it comes to working with graph data for accurate lung disease classification. This study highlights the significant impact of combining advanced research with clinical application potential in diagnosing lung diseases, providing an optimal framework for precise and efficient disease identification and classification.


Asunto(s)
Enfermedades Pulmonares , Redes Neurales de la Computación , Humanos , Enfermedades Pulmonares/diagnóstico por imagen , Enfermedades Pulmonares/diagnóstico , Procesamiento de Imagen Asistido por Computador/métodos , Aprendizaje Profundo , Algoritmos , Pulmón/diagnóstico por imagen , Pulmón/patología
6.
Materials (Basel) ; 17(9)2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38730956

RESUMEN

In the hybrid bonding process, the final stage of chemical mechanical polishing plays a critical role. It is essential to ensure that the copper surface is recessed slightly from the oxide surface. However, this recess can lead to the occurrence of interfacial voids between the bonded copper interfaces. To examine the effects of copper film thickness on bonding quality and bonding mechanisms in this study, artificial voids were intentionally introduced at the bonded interfaces at temperatures of 250 °C and 300 °C. The results revealed that as the thickness of the copper film increases, there is an increase in the bonding fraction and a decrease in the void fraction. The variations in void height with different copper film thicknesses were influenced by the bonding mechanism and bonding fraction.

7.
Natl Sci Rev ; 11(4): nwad216, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38487493

RESUMEN

The memristor is the building block of neuromorphic computing. We report a new type of nanofluidic memristor based on the principle of elastic strain on polymer nanopores. With nanoparticles absorbed at the wall of a single conical polymer nanopore, we find a pinched hysteresis of the current within a scanning frequency range of 0.01-0.1 Hz, switching to a diode below 0.01 Hz and a resistor above 0.1 Hz. We attribute the current hysteresis to the elastic strain at the tip side of the nanopore, caused by electrical force on the particles adsorbed at the inner wall surface. Our simulation and analytical equations match well with experimental results, with a phase diagram for predicting the system transitions. We demonstrate the plasticity of our nanofluidic memristor to be similar to a biological synapse. Our findings pave a new way for ionic neuromorphic computing using nanofluidic memristors.

8.
Polymers (Basel) ; 16(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38337301

RESUMEN

The widespread adoption of renewable energy hinges on the efficient transportation of hydrogen. Reciprocating piston compressor technology in non-lubricated operation will play a key role, ensuring high flow rates and compression ratios. These systems rely on advanced high-strength sealing solutions for piston and rod packing rings utilizing advanced fiber-reinforced polymers. Polyphenylene sulfide (PPS) polymer matrix composites have seen use in tribological applications and promise high mechanical strength and wear resistance. The presented work describes carbon and glass fiber-reinforced PPS matrix polymers in comparison, which are characterized by complementary methods to investigate their properties and potential for application in reciprocating compressor under non-lubricated operation. Thermo-mechanical and tribological testing was supported by microstructure analysis utilizing advanced X-ray and electron imaging techniques. New insights in micromechanical deformation behavior in regard to fiber materials, interface strength and orientation in fiber-reinforced polymers are given. Conclusions on the suitability of different PPS matrix composites for high-pressure hydrogen compression applications were obtained.

9.
IEEE J Transl Eng Health Med ; 11: 487-494, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37817823

RESUMEN

- Objective: To explore the clinical validity of elastic deformation of optical coherence tomography (OCT) images for data augmentation in the development of deep-learning model for detection of diabetic macular edema (DME). METHODS: Prospective evaluation of OCT images of DME (n = 320) subject to elastic transformation, with the deformation intensity represented by ([Formula: see text]). Three sets of images, each comprising 100 pairs of scans (100 original & 100 modified), were grouped according to the range of ([Formula: see text]), including low-, medium- and high-degree of augmentation; ([Formula: see text] = 1-6), ([Formula: see text] = 7-12), and ([Formula: see text] = 13-18), respectively. Three retina specialists evaluated all datasets in a blinded manner and designated each image as 'original' versus 'modified'. The rate of assignment of 'original' value to modified images (false-negative) was determined for each grader in each dataset. RESULTS: The false-negative rates ranged between 71-77% for the low-, 63-76% for the medium-, and 50-75% for the high-augmentation categories. The corresponding rates of correct identification of original images ranged between 75-85% ([Formula: see text]0.05) in the low-, 73-85% ([Formula: see text]0.05 for graders 1 & 2, p = 0.01 for grader 3) in the medium-, and 81-91% ([Formula: see text]) in the high-augmentation categories. In the subcategory ([Formula: see text] = 7-9) the false-negative rates were 93-83%, whereas the rates of correctly identifying original images ranged between 89-99% ([Formula: see text]0.05 for all graders). CONCLUSIONS: Deformation of low-medium intensity ([Formula: see text] = 1-9) may be applied without compromising OCT image representativeness in DME. Clinical and Translational Impact Statement-Elastic deformation may efficiently augment the size, robustness, and diversity of training datasets without altering their clinical value, enhancing the development of high-accuracy algorithms for automated interpretation of OCT images.


Asunto(s)
Aprendizaje Profundo , Diabetes Mellitus , Retinopatía Diabética , Edema Macular , Humanos , Edema Macular/diagnóstico por imagen , Retinopatía Diabética/diagnóstico , Tomografía de Coherencia Óptica/métodos , Retina
10.
J Orthop Surg Res ; 18(1): 605, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37587540

RESUMEN

Anterior cervical surgery is widely accepted and time-tested surgical procedure for treating cervical radiculopathy and myelopathy. However, there is concern about the high adjacent segment degeneration rate and implant subsidence after the surgery using the traditional polyetheretherketone cage. Thus, we creatively designed a polyurethane cervical implant that can continuous load-sharing through elastic deformation and decrease postoperative stress concentration at adjacent segments. In this study, the design rationality and safety of this novel implant was evaluated based on several mechanical parameters including compression test, creeping test, push-out test and subsidence test. The results showed that the novel cervical implant remained intact under the compressive axial load of 8000 N and continues to maintained the elastic deformation phase. The minimum push-out load of the implant was 181.17 N, which was significantly higher than the maximum compressive shear load of 20 N experienced by a normal human cervical intervertebral disc. Besides, the creep recovery behaviour of the implant closely resembled what has been reported for natural intervertebral discs and clinically applied cervical devices in literature. Under the load of simulating daily activities of the cervical spine, the implant longitudinal displacement was only 0.54 mm. In conclusion, this study showed that the current design of the elastically deformable implant was reasonable and stable to fulfil the mechanical requirements of a cervical prosthesis under physiological loads. After a more comprehensive understanding of bone formation and stress distribution after implantation, this cervical implant is promising to be applied to certain patients in clinical practice.


Asunto(s)
Miembros Artificiales , Enfermedades de la Médula Ósea , Humanos , Vértebras Cervicales/diagnóstico por imagen , Vértebras Cervicales/cirugía , Cuello , Implantación de Prótesis
11.
Small ; 19(47): e2302116, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37572377

RESUMEN

Understanding and mastering the mechanical properties of metallic nanoparticles is crucial for their use in a wide range of applications. In this context, atomic-scale (molecular dynamics) and continuous (finite elements) calculations is used to investigate in details gold nanoparticles under deformation. By combining these two approaches, it is shown that the elastic properties of such nano-objects are driven by their size but, above all, by their shape. This outcome is achieved by introducing a descriptor in the analysis of the results enabling to distinguish among the different nanoparticle shapes studied in the present work. In addition, other transition-metal nanoparticles are considered (copper and platinum) using the aforementioned approach. The same strong dependence of the elastic properties with the shape is revealed, thus highlighting the universal character of the achievements.

12.
J Endovasc Ther ; : 15266028231172400, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37165946

RESUMEN

PURPOSE: To describe the concept of aortic elastic deformation (ED) measurement using duplex ultrasonography (DUS) as a tool for detection of high aneurysm sac pressure following endovascular aortic repair (EVAR). TECHNIQUE: High aneurysm sac pressure, with or without proven endoleak, will result in a less compressible aneurysm. Using the dual image function in B-mode of the DUS device and a standardized amount of applied probe pressure, ED can be measured. It is defined as the percentage of deformation of the aneurysm sac on probe pressure application. We hypothesize that less ED of the aneurysm sac can be related with high aneurysm sac pressure and possibly the presence of clinically relevant endoleak. In this note, we describe the technical details of the procedure and report on the applicability and results of ED measurements in the framework of aortic aneurysm and EVAR follow-up in a cohort of 109 patients. CONCLUSION: ED measurement is the first noninvasive pressure-based method in the quest to find a practical and reliable diagnostic tool to exclude high aneurysm sac pressure. In our patient cohort, patients with proven endoleak showed a smaller ED (less compressible), implying the presence of high aneurysm sac pressure. Further research should confirm whether ED measurement using DUS could reliably exclude endoleak after EVAR and further explore its potential for clinical application in EVAR follow-up. CLINICAL IMPACT: For the first time, a simple, fast, and inexpensive diagnostic tool is presented in this study for detecting high sac pressure following EVAR. High sac pressure is typically caused by clinically significant endoleaks, which can have significant consequences. Currently, computed tomography scanning is the most common method used to identify and characterize endoleaks. However, measuring elastic deformation may potentially replace more invasive and expensive modalities, such as the computed tomography in the future.

13.
Sensors (Basel) ; 23(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36904988

RESUMEN

The elastic deformation of the levitation electromagnet (LM) of the high-speed maglev vehicle brings uneven levitation gaps and displacement differences between measured gap signals and the real gap in the middle of the LM, and then reduces dynamic performances of the electromagnetic levitation unit. However, most of the published literature has paid little attention to the dynamic deformation of the LM under complex line conditions. In this paper, considering the flexibility of the LM and the levitation bogie, a rigid-flexible coupled dynamic model is established to simulate deformation behaviors of the LMs of the maglev vehicle passing through the 650 m radius horizontal curve. Simulated results indicate that the deflection deformation direction of the same LM on the front transition curve is always opposite to that on the rear transition curve. Similarly, the deflection deformation direction of a left LM on the transition curve is opposite to that of the corresponding right LM. Furthermore, deflection deformation amplitudes of the LMs in the middle of the vehicle are always very small (less than 0.2 mm). However, the deflection deformation of the LMs at both ends of the vehicle is considerably large, and the maximum deflection deformation is about 0.86 mm when the vehicle passes at the balance speed. This forms a considerable displacement disturbance for the nominal levitation gap of 10 mm. It is necessary to optimize the supporting structure of the LM at the end of the maglev train in the future.

14.
Chemistry ; 29(1): e202202598, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36214731

RESUMEN

Multiple stimuli-responsive molecular crystals are attracting extensive attentions due to their potential as smart materials, such as molecular machines, actuators, and sensors. However, the task of giving a single crystal multiple stimuli-responsive properties remains extremely challenging. Herein, we found two polymorphs (Form O and Form R) of a Schiff base compound, which could respond to multiple stimuli (external force, acid, heat). Form O and Form R have different elastic deformability, which can be attributed to the differences in the molecular conformation, structural packing and intermolecular interactions. Moreover, both polymorphs exhibit reversible bending driven by volatile acid vapor, which we hypothesize is caused by reversible protonation reaction of imines with formic acid. In addition, jumping can be triggered by heating due to the significant anisotropic expansion. The integration of reversible bending and jumping into one single crystal expands the application scope of stimuli-responsive crystalline materials.


Asunto(s)
Gases , Calefacción , Anisotropía , Calor , Iminas
15.
J Phys Condens Matter ; 35(4)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36541481

RESUMEN

We report the counter-intuitive instability of charged elastic rings, and the persistence of sinusoidal deformations in the lowest-energy configurations by the combination of high-precision numerical simulations and analytical perturbation calculation. We also study the dynamical evolution of the charged ring under random disturbance, and reveal the modulation of the dominant frequencies by the electrostatic force. The purely mechanical analysis of the classical ring system presented in this work yields insights into the subtlety of long-range forces in the organization and dynamics of matter.

16.
Materials (Basel) ; 15(21)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36363290

RESUMEN

The energy dissipation capacity and damping ability of restorative materials used to restore deciduous teeth were assessed compared to common mechanical properties. Mechanical properties (flexural strength, modulus of elasticity, modulus of toughness) for Compoglass F, Dyract eXtra, SDR flow, Tetric Evo Ceram, Tetric Evo Ceram Bulk Fill, and Venus Diamond were determined using a 4-point bending test. Vickers hardness and Martens hardness, together with its plastic index (ηITdis), were recorded using instrumented indentation testing. Leeb hardness (HLD) and its deduced energy dissipation data (HLDdis) were likewise determined. The reliability of materials was assessed using Weibull analysis. For common mechanical properties, Venus Diamond always exhibited the significantly highest results and SDR flow the lowest, except for flexural strength. Independently determined damping parameters (modulus of toughness, HLDdis, ηITdis) invariably disclosed the highest values for SDR flow. Composite materials, including SDR flow, showed markedly higher reliabilities (Weibull modulus) than Compoglass F and Dyract eXtra. SDR flow showed pronounced energy dissipation and damping characteristics, making it the most promising material for a biomimetic restoration of viscoelastic dentin structures in deciduous teeth. Future developments in composite technology should implement improved resin structures that facilitate damping effects in artificial restorative materials.

17.
Angew Chem Int Ed Engl ; 61(42): e202210128, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-35962609

RESUMEN

Integrating plasticity and elasticity in anisotropic molecular crystals is theoretically possible and is beneficial in enabling rich and complex deformations; however, it is much harder to implement in practice. Herein, we report a centimeter-long organic crystal that is two-dimensionally (2D) elastically bendable not only at room temperature but also at ultralow temperatures (-196 °C). The straight crystal can also be manually twisted and reconfigured to form arbitrary right-handed or left-handed helical structures. The integration of low-temperature-resistant (LTR) 2D elastic-bending and reconfigurable plastic-twisting deformations into one organic crystal expands the perspectives of the emerging crystal flexibility. Taking advantage of the unique multiple flexibility characteristics, spatial controllability of optical transmission for cryogenic applications and reusability of light-polarization rotations have been implemented simultaneously in an organic crystal.

18.
MAGMA ; 35(6): 953-963, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35689696

RESUMEN

OBJECTIVE: The current distribution of the matrix gradient coil can be optimized via matrix gradient coil modeling to reduce the Lorentz force on individual coil elements. Two different modeling approaches are adopted, and their respective characteristics are summarized. METHODS: The magnetic field at each coil element is calculated. Then, the Lorentz force, torque, and deformation of the energized coil element in the magnetic field are derived. Two modeling approaches for matrix gradient coil, namely, optimizing coil element current (OCEC) modeling and optimizing coil element Lorentz force (OCEF) modeling, are proposed to reduce the Lorentz force on individual coil elements. The characteristics of different modeling approaches are compared by analyzing the influence of the weighting factor on the performance of the coil system. The current, Lorentz force, torque, and deformation results calculated via different modeling approaches are also compared. RESULTS: Coil element magnetic fields are much weaker than the main magnetic field, and their effect can be ignored. Matrix gradient coil modeling with different regularization terms can help to decrease the current and Lorentz force of coil elements. The performance of the coil system calculated via different modeling approaches is similar when suitable weighting factors are adopted. The two modeling approaches, OCEC and OCEF, can better reduce the maximum current and Lorentz force on individual coil elements compared with the traditional modeling approach. CONCLUSIONS: Different modeling approaches can help to optimize the current distribution of coil elements and satisfy various requirements while maintaining the performance of the coil system.

19.
Polymers (Basel) ; 14(3)2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35160480

RESUMEN

The aim of the present study was to evaluate and quantify the damping properties of common resin-based computer-aided design and computer-aided manufacturing (CAD/CAM) restorative materials (CRMs) and assess their energy dissipation abilities. Leeb hardness (HLD), together with its deduced energy dissipation data (HLDdis), and loss tangent values recorded via dynamic mechanical analysis (DMA) were determined for six polymer, four composite, and one ceramic CRM as well as one metal. Data were statistically analyzed. Among resin-based CRMs, the significantly highest HLDdis data were detected for the fiber-reinforced composite FD (p < 0.001) directly followed by the filler-reinforced Ambarino High Class (p < 0.001). The significantly lowest HLDdis values were observed for the polymer-based CRM Telio CAD (p < 0.001). For loss tangent, both PEEK materials showed the significantly lowest data and the polymer-based M-PM the highest results with all composite CRMs in between. HLDdis data, which simultaneously record the energy dissipation mechanism of plastic material deformation, more precisely characterize the damping behavior of resin-based CRMs compared to loss tangent results that merely describe viscoelastic material behavior. Depending on material composition, resin-based CRMs reveal extremely different ratios of viscoelastic damping but frequently show enhanced HLDdis values because of plastic material deformation. Future developments in CAD/CAM restorative technology should focus on developing improved viscoelastic damping effects.

20.
Materials (Basel) ; 16(1)2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-36614496

RESUMEN

This article analyzes the influence of the initial deflection of the flat layers on the bending stiffness (BS) of honeycomb paperboards and presents two methods for its calculation. Both methods allow for the determination of BS in the main directions in the plane of the paperboard, i.e., the machine direction (MD) and the cross direction (CD). In addition, they have been verified by comparing the calculation results with the results of the BS measurements. The first method allowed for the calculation of the BS of cellular paperboard based on the mechanical properties of the paper used for its production. The second method allowed for the estimation of the BS of cellular paperboard based on the bending stiffness of other honeycomb paperboards with the same raw material composition and the same core cell size but with different thicknesses. In the first analytical method for the calculation of the bending stiffness of cellular paperboard, which does not include the deflections of the flat layers, the calculation results significantly differ from the measurement results, and they are overestimated. The second of the presented BS calculation methods allowed for a much more accurate assessment of paperboard's bending stiffness depending on its thickness.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA