Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39274627

RESUMEN

Crack detection in high-pressure hydrogen gas components, such as pipes, is crucial for ensuring the safety and reliability of hydrogen infrastructure. This study conducts the nondestructive testing of crack propagation in steel piping under cyclic compressive loads in the presence of hydrogen in the material. The specimens were hydrogen-precharged through immersion in a 20 mass% ammonium thiocyanate solution at 40 °C for 72 h. The crack growth rate in hydrogen-precharged specimens was approximately 10 times faster than that in uncharged specimens, with cracks propagating from the inner to outer surfaces of the pipe. The fracture surface morphology differed significantly, with flat surfaces in hydrogen-precharged materials and convex or concave surfaces in uncharged materials. Eddy current and hammering tests revealed differences in the presence of large cracks between the two materials. By contrast, hammering tests revealed differences in the presence of a half size crack between the two materials. These findings highlight the effect of hydrogen precharging on crack propagation in steel piping and underscore the importance of early detection methods.

2.
Sensors (Basel) ; 24(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39000995

RESUMEN

A reliable and efficient rail track defect detection system is essential for maintaining rail track integrity and avoiding safety hazards and financial losses. Eddy current (EC) testing is a non-destructive technique that can be employed for this purpose. The trade-off between spatial resolution and lift-off should be carefully considered in practical applications to distinguish closely spaced cracks such as those caused by rolling contact fatigue (RCF). A multi-channel eddy current sensor array has been developed to detect defects on rails. Based on the sensor scanning data, defect reconstruction along the rails is achieved using an inverse algorithm that includes both direct and iterative approaches. In experimental evaluations, the EC system with the developed sensor is used to measure defects on a standard test piece of rail with a probe lift-off of 4-6 mm. The reconstruction results clearly reveal cracks at various depths and spacings on the test piece.

3.
Sensors (Basel) ; 24(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38894241

RESUMEN

Eddy current testing (ECT) is commonly used for the detection of defects inside metallic materials. In order to achieve the effective testing of CFRP materials, increasing the operating frequency or improving the coil structure is a common method used by researchers. Higher or wider operating frequencies make the design of the ADC's conditioning circuit complex and difficult to miniaturize. In this paper, an LC resonator based on inductance-to-digital converters (LDCs) is designed to easily detect the resonant frequency response to the state of the material under test. The reasonableness of the coil design is proven by simulation. The high signal-to-noise ratio (SNR) and detection sensitivity of the LC resonator are demonstrated through comparison experiments involving multiple probes. The anti-interference capability of the LC resonator in CFRP defect detection is demonstrated through various interference experiments.

4.
Sensors (Basel) ; 24(7)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38610470

RESUMEN

Steel Plate Cold-Rolled Commercial (SPCC) steel is known to have long-term durability. However, it still undergoes corrosion when exposed to corrosive environments. This paper proposes an evaluation method for assessing the corrosion level of SPCC steel samples using eddy current testing (ECT), along with two different machine learning approaches. The objective is to classify the corrosion of the samples into two states: a less corroded state (state-1) and a highly corroded state (state-2). Generative and discriminative models were implemented for classification. The generative classifier was based on the Gaussian mixture model (GMM), while the discriminative model was based on the logistic regression model. The features used in the classification models are the peaks of the perturbated magnetic fields at two different frequencies. The performance of the classifiers was evaluated using metrics such as absolute error, accuracy, precision, recall, and F1 score. The results indicate that the GMM model is more conducive to categorizing states with higher levels of corrosion, while the logistic regression model is helpful in estimating states with lower levels of corrosion. Meanwhile, high classification accuracy can be achieved based on both methods using eddy current testing.

5.
Sensors (Basel) ; 24(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38339514

RESUMEN

A large portion of the pipe infrastructure used in the chemical processing industry is susceptible to corrosion under insulation (CUI). Eddy current-based magnetic sensing is one of the methods that can be used as an early detector of this corrosion. However, the large sensor-to-pipe distances used in this method, due to the presence of insulation, limits the sensitivity to corrosion. This paper will describe the development of instrumentation and methods based on eddy current sensing with thin-film magnetic sensors. In particular, it focuses on the influence of the sensor angle relative to the radial magnetic field. The influence of this parameter on the amplitude of the measured signal was investigated by both finite element simulations and experimental observations. The measured magnetic field was found to be highly sensitive to small changes in sensor angle, with the estimated depth of a defect changing at a rate of 11.2 mm/degree of sensor rotation for small angles. It is also shown that a sensor aligned with the radial direction should be avoided, with an optimal sensor angle between 0.5 and 4 degrees. With the sensor in this angle range, the simulations have shown it should be possible to resolve the depth of corrosion to a resolution of 0.1 mm.

6.
Materials (Basel) ; 16(20)2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37895631

RESUMEN

The article discusses the utilization of Pulsed Multifrequency Excitation and Spectrogram Eddy Current Testing (PMFES-ECT) in conjunction with the supervised learning method for the purpose of estimating defect parameters in conductive materials. To obtain estimates for these parameters, a three-dimensional finite element method model was developed for the sensor and specimen containing defects. The outcomes obtained from the simulation were employed as training data for the k-Nearest Neighbors (k-NN) algorithm. Subsequently, the k-NN algorithm was employed to determine the defect parameters by leveraging the available measurement outcomes. The evaluation of classification accuracy for different combinations of predictors derived from measured data is also presented in this study.

7.
Polymers (Basel) ; 15(20)2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37896426

RESUMEN

When manufacturing fiber-reinforced composites, it is possible to improve the quality of fiber steel fire and reduce the number of cracks in the finished product if it is possible to quickly identify the defects of the fiber tow. Therefore, in this study, we developed a method to identify the condition of carbon fiber tow using eddy current test (ECT), which is used to improve the quality of composite materials. Using the eddy current detection sensor, we checked the impedance results according to the condition of the CF tow. We found that the materials of the workbench used in the experiment greatly affected the ECT results, so it is necessary to use a material with a non-conductive and smooth surface. We evaluated the impedance results of the carbon fiber at 2 mm intervals using the ECT sensor and summarized the impedance results according to the fiber width direction, presenting the condition of the section as a constant of variation (CV). If the condition of the carbon fiber tow was unstable, the deviation of the CV per section was large. In particular, the deviation of the CV per section was more than 0.15 when the arrangement of the fibers was changed, foreign substances were formed on the surface of the fibers, and damage occurred in the direction of the fiber width of more than 4 mm, so it was easy to evaluate the quality on CF tow.

8.
Sensors (Basel) ; 23(13)2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37447933

RESUMEN

The article discusses the practical application of the method of electromagnetic non-destructive investigation of austenitic materials. To identify and evaluate deep artificial defects, the sweep-frequency eddy current method with harmonic excitation is used. The objects of interest are the surface electric-discharged machined notches, with a defined geometry, fabricated in a plate with a thickness of 30 mm. An innovative eddy current probe with a separate excitation and detection circuit is used for the investigation. The achieved results clearly demonstrate the robustness and potential of the method, especially for deep defects in thick material. By using the fifth probe in connection with the frequency sweeping of eddy currents, it is possible to reliably detect artificial defects up to 24 ± 0.5 mm deep by using low-frequency excitation signals. An important fact is that the measuring probe does not have to be placed directly above the examined defect. The experimental results achieved are presented and discussed in this paper. The conducted study can serve, for example, as an input database of defect signals with a defined geometry to increase the convergence of learning networks and for the prediction of the geometry of real (fatigue and stress-corrosion) defects.


Asunto(s)
Placas Óseas , Electricidad , Humanos , Bases de Datos Factuales , Fatiga , Aprendizaje
9.
Sensors (Basel) ; 23(14)2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37514904

RESUMEN

To study the influence of the geometric structure of the probe coil on the electromagnetic characteristics of the eddy current probe in the process of eddy current testing, based on the principle of eddy current testing, different probe coil models were established using finite element software. These geometric structure parameters include the difference between the inner and outer radius, thickness, and equivalent radius. The magnetic field distribution around the probe is simulated and analyzed under different parameters, and the detection performance of the probe is judged in combination with the change rate of the magnetic field around the probe coil. The simulation results show that at a closer position, increasing the difference between the inner and outer radii, reducing the thickness, and reducing the equivalent radius are beneficial to improve the resolution of the probe coil. At a far position, reducing the difference between the inner and outer radii, increasing the thickness, and reducing the equivalent radius are beneficial to improve the resolution of the probe coil. At the same time, the accuracy of the simulation data is verified by comparing the theoretical values with the simulated values under different conditions. Therefore, the obtained conclusions can provide a reference and basis for the optimal design of the probe structure.

10.
Sci Prog ; 106(2): 368504231172635, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37143332

RESUMEN

Local corrosion flaws (LCFs) widely exist in large diameter pipelines (LDPs) (e.g. steam, oil/gas pipeline) due to flow-accelerated corrosion, environmental corrosion, and material aging. Frequency-band-selecting eddy current testing (FBS-ECT), as an improved eddy current technique (ECT), has rich harmonic components in exciting signals as a pulsed eddy current technique (PECT), as well as more effective utilization of electromagnetic energy by selecting a frequency band. It is expected that FBS-ECT has promising applications in detecting and evaluating the LCFs in LDP. Therefore, a solution to the magnetic field of FBS-ECT for LCF detection in LDP is of great concern to reveal the features of the FBS-ECT signal and the parameters of the LCF. Extending our previous work, the semi-analytic expression of the magnetic flux density for FBS-ECT in regions 1 and 2 (where the magnetic sensor is located) is deduced according to the superposition principle and TREE, the computation accuracy is validated by numerical simulation; next, a semi-analytic solution to the magnetic field of FBS-ECT for LCF in LDP is proposed; then, the sampling distance in FBS-ECT is optimized by considering the magnitude of △Bz and the sensitivity of △Bz with the LCF depth; finally, a case study is carried out to verify the optimal strategy and find the mapping relationship between the radius/depth and the FBS-ECT signal. The proposed semi-analytic solution for the magnetic field of FBS-ECT is not only helpful to understand the theoretical relationship of the magnetic field and LCFs with higher computation efficiency but also lays a theoretical foundation to promote FBS-ECT to apply in the characterization of other flaws in metal components.

11.
Sensors (Basel) ; 23(9)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37177537

RESUMEN

The production of parts by additive manufacturing is an important issue for the reduction in manufacturing costs and the creation of complex geometries. Optical inspection is often implemented in the machines during the manufacturing process in order to monitor the possible generated defects. However, it is also crucial to test the quality of the manufactured parts after their fabrication and monitor their health throughout their industrial lifetime. Therefore structural health monitoring (SHM) methods need to be studied or designed. In this paper, the eddy current method is used to control fabricated parts, as this technique is adapted to detect surface and shallow defects in conductive materials. Using simulations with the CIVA non-destructive testing software package, several sensors and their parameters were tested in order to determine the most optimal ones: a separate transmitter/receiver sensor and an isotropic sensor were finally designed. The comparison of these sensors' efficiency was made on the detection of notches and engraved letters based on simulation and experimental tests on parts fabricated by laser powder bed fusion (L-PBF) in order to determine the optimal sensor. The various tests showed that the isotropic sensor is the optimal one for the detection and characterization of defects.

12.
Sensors (Basel) ; 23(6)2023 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-36991765

RESUMEN

The solution of the eigenvalue problem in bounded domains with planar and cylindrical stratification is a necessary preliminary task for the construction of modal solutions to canonical problems with discontinuities. The computation of the complex eigenvalue spectrum must be very accurate since losing or misplacing one of the thereto linked modes will have an important impact on the field solution. The approach followed in a number of previous works is to construct the corresponding transcendental equation and locate its roots in the complex plane using the Newton-Raphson method or Cauchy-integral-based techniques. Nevertheless, this approach is cumbersome, and its numerical stability decreases dramatically with the number of layers. An alternative, approach consists in the numerical evaluation of the matrix eigenvalues for the weak formulation for the respective 1D Sturm-Liouville problem using linear algebra tools. An arbitrary number of layers can thus be easily and robustly treated, with continuous material gradients being a limiting case. Although this approach is often used in high frequency studies involving wave propagation, this is the first time that has been used for the induction problem arising in an eddy current inspection situation. The developed method is implemented in Matlab and is used to deal with the following problems: magnetic material with a hole, a magnetic cylinder, and a magnetic ring. In all the conducted tests, the results are obtained in a very short time, without missing a single eigenvalue.

13.
Sensors (Basel) ; 23(6)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36991978

RESUMEN

This paper presents a practical way of using the method of evaluating the metrological properties of eddy current sensors. The idea of the proposed approach consists of employing a mathematical model of an ideal filamentary coil to determine equivalent parameters of the sensor and sensitivity coefficients of tested physical quantities. These parameters were determined on the basis of the measured value of the real sensor's impedance. The measurements were carried out with an air-core sensor and an I-core sensor while they were positioned at different distances from the surface of tested copper and bronze plates. An analysis of the influence of the coil's position in relation to the I core on the equivalent parameters was also carried out, and the interpretation of the results obtained for various sensor configurations was presented in a graphical form. When equivalent parameters and sensitivity coefficients of examined physical quantities are known, it is possible to compare even very different sensors with the employment of one measure. The proposed approach makes it possible to make a significant simplification of the mechanisms of calibration of conductometers and defectoscopes, computer simulation of eddy current tests, creating the scale of a measuring device, and designing sensors.

14.
Sensors (Basel) ; 23(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36904914

RESUMEN

This work presents a new eddy current testing array probe and readout electronics that target the layer-wise quality control in powder bed fusion metal additive manufacturing. The proposed design approach brings important benefits to the sensors' number scalability, exploring alternative sensor elements and minimalist signal generation and demodulation. Small-sized, commercially available surface-mounted technology coils were evaluated as an alternative to usually employed magneto-resistive sensors, demonstrating low cost, design flexibility, and easy integration with the readout electronics. Strategies to minimize the readout electronics were proposed, considering the specific characteristics of the sensors' signals. An adjustable single phase coherent demodulation scheme is proposed as an alternative to traditional in-phase and quadrature demodulation provided that the signals under measurement showed minimal phase variations. A simplified amplification and demodulation frontend using discrete components was employed together with offset removal, vector amplification, and digitalization implemented within the microcontrollers' advanced mixed signal peripherals. An array probe with 16 sensor coils and a 5 mm pitch was materialized together with non-multiplexed digital readout electronics, allowing for a sensor frequency of up to 1.5 MHz and digitalization with 12 bits resolution, as well as a 10 kHz sampling rate.

15.
Materials (Basel) ; 16(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36837081

RESUMEN

Corrosion under insulation (CUI) is a major threat to the structural integrity of insulated pipes and vessels. Pulsed eddy-current testing (PECT) is well known in the industry for detecting CUI, but its readings can be easily influenced by nearby conductive objects, including the insulation supporting metal mesh. As a sequel to our previous study, this paper focuses on the surface distribution of eddy currents at the time of the turning off of the driving voltage instead of examining the overall process of eddy current diffusion. Based on the fact that CUI takes place on the outside of the insulated specimen, the probe footprint was calculated only on the specimen surface. The corrosion depth was regarded as an increment to the probe lift-off, whose information was carried in the early PECT signal. Finite element simulations were performed to facilitate the calculation of the probe footprint and predict the signal behavior. The peak value, which appeared in the early phase of the differential PECT signal, was found to be well correlated with the corrosion depth. Further studies revealed that the mild steel mesh could result in the enlargement of the probe footprint and a decrease in the change rate of the peak value in relation to the corrosion depth. Finally, experiments were conducted to verify the simulation results. The presented findings are consistent with the previously reported results and provide a potential alternative to evaluate CUI in specific scenarios where the insulation has a fixed and uniform thickness.

16.
Sensors (Basel) ; 23(4)2023 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-36850668

RESUMEN

It is a continual and challenging problem to detect small defects in metallic structures for array eddy current testing (ECT) probes, which require the probe to have ultra-high resolution and sensitivity. However, the spatial resolution of an ECT array probe is limited by the size of the induction coils. Even if it is possible to increase the spatial resolution by using smaller coils, the sensitivity of the sensor also decreases. To obtain finer spatial resolution without sacrificing sensitivity, this paper proposes a resolution enhanced ECT array probe with four rows of coils attached to a flexible printed circuit board (FPCB). The distance between each two adjacent coils in a row is 2 mm and the position of each row is offset by 0.5 mm along the horizontal direction related to its prior row. The outputs of the four rows are aligned and interpolated in a line, and in this way the image resolution of the probe is increased to 0.5 mm. The probe is configured to operate with the differential setting, namely two differential coils operate simultaneously at each time. The currents in the two coils can be controlled to have the same flowing direction or opposite flowing direction, resulting in different distributions of the induced eddy current and two sets of output images. A patch-image model and an image fusion method based on discrete wavelet transforms are employed to suppress the noise and highlight the defects' indications. Experimental results show that small defects with dimensions as small as length × width × depth = 1 mm × 0.1 mm × 0.3 mm on a 304 stainless-steel sample can be detected from the fused image, demonstrating that the probe has super sensitivity for small defects inspection.

17.
Materials (Basel) ; 16(2)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36676243

RESUMEN

This paper presents the results of experiments using the eddy current system designated for nondestructive inspection of carbon fiber-reinforced composites. For this purpose, the eddy current testing system with a differential transducer with two pairs of excitation coils oriented perpendicularly and a central pick-up coil was utilized. The transducer measures the magnetic flux difference flowing through the pick-up coil. The transducer of this design has already been successfully utilized to inspect isotropic metal structures. However, the anisotropy of the composites and their lower conductivity compared to metal components made the transducer parameters adjustment essential. Thus, various excitation frequencies were considered and investigated. The system was evaluated using a sample made of orthogonally woven carbon fiber-reinforced composites with two artificial flaws (the notches with a maximum relative depth of 30% and 70%, respectively, thickness of 0.4 mm, and a length of 5 mm). The main goal was to find a configuration suitable for detecting hidden flaws in such materials.

18.
Sensors (Basel) ; 23(2)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36679838

RESUMEN

Conductors consisting of thin layers are commonly used in many industries as protective, insulating or thermal barrier coatings (TBC). Nondestructive testing of these types of structures allows one to determine their dimensions and technical condition, while also detecting defects, which significantly reduces the risk of failures and accidents. This work presents an eddy current system for testing thin layers and coatings, which has never been presented before. It consists of an analytical model and a pot-core sensor. The analytical model was derived through the employment of the truncated region eigenfunction expansion (TREE) method. The final formulas for the sensor impedance have been presented in a closed form and implemented in Matlab. The results of the calculations of the pot-core sensor impedance for thin layers with a thickness above 0.1 mm were compared with the measurement results. The calculations made for the TBC were verified with a numerical model created using the finite element method (FEM) in Comsol Multiphysics. In all the cases, the error in determining changes in the components of the pot-core sensor impedance was less than 4%. At the same time, it was shown that the sensitivity of the applied pot-core sensor in the case of thin-layer testing is much higher than the sensitivity of the air-core sensor and the I-core sensor.


Asunto(s)
Conductividad Eléctrica , Impedancia Eléctrica
19.
Sensors (Basel) ; 22(22)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36433290

RESUMEN

Eddy current (EC) testing has become one of the most common techniques for measuring metallic planar structures in various industrial scenarios such as infrastructures, automotive, manufacturing, and chemical engineering. There has been significant progress in measuring the geometry, electromagnetic properties, and defects of metallic planar structures based on electromagnetic principles. In this review, we summarize recent developments in EC computational models, systems, algorithms, and measurement approaches for planar structures. First, the computational models including analytical models, numerical methods, and plate property estimation algorithms are introduced. Subsequently, the impedance measurement system and probes are presented. In plate measurements, sensor signals are sensitive to probe lift-off, and various algorithms for reducing the lift-off effect are reviewed. These approaches can be used for measureing thickness and electromagnetic properties. Furthermore, defect detection for metallic plates is also discussed.

20.
Sensors (Basel) ; 22(19)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36236478

RESUMEN

In this paper, guided Lamb wave tomography and eddy current testing (ECT) techniques were combined to locate and evaluate fiber breaks in carbon-fiber-reinforced plastic (CFRP) structures. Guided wave testing (GWT) and computed tomography (CT) imaging were employed to quickly locate fiber breaks in the CFRP plate. From B-scans performed along two different fiber orientations (0 and 90 degrees), parallel-beam projections of different features were extracted from the guided wave signals, using signal-processing techniques (such as wavelet and Hilbert transforms) and statistical functions (such as skewness and kurtosis). The parallel-beam projections of each individual feature were used as input in computed tomography imaging reconstruction to approximately estimate the location of fiber breaks. From the obtained reconstructed images, image-fusion techniques were applied to get complementary information from multiple source images into one single image. After locating the fiber breaks, C-scans were performed in the vicinity of the damage, using an ECT probe with double excitation configuration to evaluate the condition of the fiber break.


Asunto(s)
Carbono , Plásticos , Carbono/química , Fibra de Carbono , Plásticos/química , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA