Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Life (Basel) ; 13(1)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36676158

RESUMEN

Seaweed farming in Europe is growing and may provide environmental benefits, including habitat provisioning, coastal protection, and bioremediation. Habitat provisioning by seaweed farms remains largely unquantified, with previous research focused primarily on the detrimental effects of epibionts, rather than their roles in ecological functioning and ecosystem service provision. We monitored the development and diversity of epibiont assemblages on cultivated sugar kelp (Saccharina latissima) at a farm in Cornwall, southwest UK, and compared the effects of different harvesting techniques on epibiont assemblage structure. Increases in epibiont abundance (PERMANOVA, F4,25 = 100.56, p < 0.001) and diversity (PERMANOVA, F4,25 = 27.25, p < 0.001) were found on cultivated kelps over and beyond the growing season, reaching an average abundance of >6000 individuals per kelp plant with a taxonomic richness of ~9 phyla per kelp by late summer (August). Assemblages were dominated by crustaceans (mainly amphipods), molluscs (principally bivalves) and bryozoans, which provide important ecological roles, despite reducing crop quality. Partial harvesting techniques maintained, or increased, epibiont abundance and diversity beyond the farming season; however, these kelp plants were significantly fouled and would not be commercially viable in most markets. This paper improves understanding of epibiont assemblage development at European kelp farms, which can inform sustainable, ecosystem-based approaches to aquaculture.

2.
Sci Total Environ ; 855: 158898, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36150595

RESUMEN

Aquaculture is one of the fastest growing sectors in the world. However, this may come with a cost, as increasing aquatic production is likely to impose changes in the environment. To ensure ecosystem sustainability, it is essential to think on this larger scale. This study aims to use the Delft3D model suite to evaluate the ecological carrying capacity for bivalve production in the Sado Estuary (Portugal), under present and future conditions (2050). Scenarios for increased oyster production resulted in reductions of chlorophyll a associated with increased nutrient concentrations. In the most extreme production scenario, which considered an increase of 100 ha in production area, a predicted decrease of 90 % in phytoplankton biomass was observed. Climate change (CC) was incorporated as an increase in sea level and water temperature, as well as a reduction in river flow. Under present oyster production conditions, CC revealed contrasting patterns, i.e. an increase in chlorophyll a concentrations and a reduction in nutrients. These results suggest that CC has a positive effect in counteracting the impacts of increased oyster production, however further research is necessary. All scenarios point to reduced dissolved oxygen concentrations, highlighting the need to monitor this parameter. Given the difficulty in defining what are unacceptable impacts to the ecosystem it would be prudent to include a socio-ecological framework in the future, in order to integrate ecosystem services and the perception of local stakeholders.


Asunto(s)
Ecosistema , Ostreidae , Animales , Estuarios , Clorofila A , Portugal , Acuicultura
3.
Environ Sci Pollut Res Int ; 24(10): 8957-8966, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26330311

RESUMEN

Rapid economic development and increasing population in China have exerted tremendous pressures on the coastal ecosystems. In addition to land-based pollutants and reclamation, fast expansion of large-scale intensive mariculture activities has also brought about additional effects. So far, the ecological impact of rapid mariculture development and its large-scale operations has not drawn enough attention. In this paper, the rapid development of mariculture in China is reviewed, China's effort in the application of ecological mariculture is examined, and the vulnerability of marine ecosystem to mariculture impact is evaluated through a number of examples. Removal or reduced large and forage fish, due to both habitat loss to reclamation/mariculture and overfishing for food or fishmeal, may have far-reaching effects on the coastal and shelf ecosystems in the long run. Large-scale intensive mariculture operations carry with them undesirable biological and biochemical characteristics, which may have consequences on natural ecosystems beyond normally perceived spatial and temporal boundaries. As our understanding of possible impacts of large-scale intensive mariculture is lagging far behind its development, much research is urgently needed.


Asunto(s)
Ecología , Ecosistema , Animales , China , Ambiente , Peces
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA