Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Enzyme Microb Technol ; 173: 110364, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38039714

RESUMEN

Brown algae are gaining recognition as sources of bio-compounds with diverse properties and potential applications in the food, nutraceutical, and pharmaceutical industries. Compounds such as polyphenols, alginates and fucoidan possess multiple bioactivities, including antidiabetic, antioxidant, anticancer, anti-inflammatory, and antibacterial properties. Conventional extraction methods provide low yields, posing challenges for the industrial applications of biocompounds. However, innovations are rapidly emerging to address these challenges, and one such approach is enzyme-assisted extraction. Furthermore, extracting single compounds undervalues algal biomass as valuable compounds may remain in the waste. Therefore, the aim of our study was to develop a framework for the sequential and enzyme-assisted extraction of various bio-compounds using the same biomass in a biorefinery process. The Ecklonia maxima algal biomass was defatted, and polyphenols were extracted using solid-liquid extraction with aqueous ethanol. The remaining residue was treated with an enzyme combination (Cellic® Ctec 2 and Viscozyme L) to liberate carbohydrates into solution, where an alginate and fucoidan fraction were isolated. A second alginate fraction was harvested from the residue. The phenolic fraction yielded about 11% (dry weight of extract/dry weight of seaweed biomass), the alginate fraction 35% and the fucoidan fraction 18%. These were analysed using a variety of biochemical methods. Structural analyses, including FTIR, NMR and TGA, were performed to confirm the integrity of these compounds. This study demonstrated that a sequential extraction method for various algal bioproducts is possible, which can pave the way for a biorefinery approach. Furthermore, our study primarily employed environmentally and eco-friendly extraction technologies promoting an environmentally sustainable industrial approach. This approach enhances the feasibility and flexibility of biorefinery operations, contributing to the development of a circular bio-economy.


Asunto(s)
Phaeophyceae , Alginatos , Plantas , Biomasa , Antioxidantes , Polifenoles
2.
Ultrason Sonochem ; 101: 106710, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38043460

RESUMEN

Fucoidan, a sulphated polysaccharide, is found exclusively in brown seaweeds and has been reported to possess a wide range of biological functionalities. Fucoidans are found within the cell wall of brown seaweeds, which is composed of recalcitrant cellulose and hemicellulose. This hampers the recovery of fucoidans. In addition, fucoidans are found within a network of viscous hydrocolloids, alginates, further complicating their recovery. Traditionally, the hot water extraction method is used to recover fucoidans from brown seaweed, however, this is characterized by low yields and long extraction time. To combat these issues, several novel extraction technologies have been introduced, these include ultrasound-assisted extraction and enzyme-assisted extraction. Thus, the main aim of this study was to investigate and optimize fucoidan recovery from Ecklonia maxima based on ultrasound-assisted enzymatic extraction. The impact of temperature (40-65 °C), ultrasound intensity (0-118 W·cm-2), enzyme dosage (0-0.05 ml·g-1) and pH (4.5-6) on total dissolved, total carbohydrates and inorganic sulphates yields was studied. The application of ultrasound-assisted enzymatic extraction mainly improved the extraction of total carbohydrates. Ultrasound significantly improves the kinetics and extraction of fucoidan, but there was no merit when it was applied with enzymes. Results reveal that at optimized conditions, the fucoidan extracted 79.13 mg⋅g-1 (7.9 % w/w) of algal dry weight. The present study provides insight into the extraction potentials of enzyme-assisted extraction, ultrasound-assisted extraction, and ultrasound-assisted enzymatic extraction.


Asunto(s)
Kelp , Phaeophyceae , Algas Marinas , Sudáfrica , Polisacáridos/química , Algas Marinas/química
3.
Mar Environ Res ; 192: 106216, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37891025

RESUMEN

Seaweed has garnered increasing interest due to its capacity to mitigate climate change by curbing carbon emissions from agriculture, as well as its potential to serve as a supplement or alternative for dietary, livestock feed, or fuel source production. Moreover, seaweed is regarded as one of the earliest plant forms to have evolved on Earth. Owing to the extensive body of literature available and the uncertainty surrounding the future trajectory of seaweed research under evolving climate conditions, this review scrutinizes the structure, dynamics, and progression of the literature pertaining to seaweed and climate change. This analysis is grounded in the Web of Science Core Collection database, augmented by CiteSpace software. Furthermore, we discuss the productivity and influence of individual researchers, research organizations, countries, and scientific journals. To date, there have been 8047 articles published globally (after a series of filters and exclusions), with a notable upswing in publication frequency since 2018. The USA, China, and Australia are among the leading countries contributing to this research area. Our findings reveal that current research on seaweed and climate change encompasses 13 distinct research clusters, including "marine heatwave", "temperate estuary", "ocean acidification", and "macroalgal bloom". The most frequently cited keywords are "climate change", "biomass", "community", and "photosynthesis". The seaweed species most commonly referenced in relation to climate change include Gracilaria sp., Sargassum sp., Ecklonia maxima, and Macrocystis pyrifera. These results provide valuable guidance for shaping the direction of specialized topics concerning marine biodiversity under shifting climate conditions. We propose that seaweed production may be compromised during prolonged episodes of reduced water availability, emphasizing the need to formulate strategies to guarantee its continued viability. This article offers fresh perspectives on the analysis of seaweed research in the context of impending climate change.


Asunto(s)
Algas Marinas , Cambio Climático , Biomasa , Biodiversidad , Estuarios
4.
Mar Drugs ; 21(4)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37103342

RESUMEN

Human colorectal cancer (CRC) is a recurrent, deadly malignant tumour with a high incidence. The incidence of CRC is of increasing alarm in highly developed countries, as well as in middle to low-income countries, posing a significant global health challenge. Therefore, novel management and prevention strategies are vital in reducing the morbidity and mortality of CRC. Fucoidans from South African seaweeds were hot water extracted and structurally characterised using FTIR, NMR and TGA. The fucoidans were chemically characterised to analyse their composition. In addition, the anti-cancer properties of the fucoidans on human HCT116 colorectal cells were investigated. The effect of fucoidans on HCT116 cell viability was explored using the resazurin assay. Thereafter, the anti-colony formation potential of fucoidans was explored. The potency of fucoidans on the 2D and 3D migration of HCT116 cells was investigated by wound healing assay and spheroid migration assays, respectively. Lastly, the anti-cell adhesion potential of fucoidans on HCT116 cells was also investigated. Our study found that Ecklonia sp. Fucoidans had a higher carbohydrate content and lower sulphate content than Sargassum elegans and commercial Fucus vesiculosus fucoidans. The fucoidans prevented 2D and 3D migration of HCT116 colorectal cancer cells to 80% at a fucoidan concentration of 100 µg/mL. This concentration of fucoidans also significantly inhibited HCT116 cell adhesion by 40%. Moreover, some fucoidan extracts hindered long-term colony formation by HCT116 cancer cells. In summary, the characterised fucoidan extracts demonstrated promising anti-cancer activities in vitro, and this warrants their further analyses in pre-clinical and clinical studies.


Asunto(s)
Neoplasias Colorrectales , Fucus , Algas Marinas , Humanos , Línea Celular Tumoral , Sudáfrica , Algas Marinas/química , Polisacáridos/farmacología , Polisacáridos/química , Neoplasias Colorrectales/tratamiento farmacológico , Fucus/química
5.
Mar Drugs ; 20(12)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36547913

RESUMEN

Airborne particulate matter (PM) originating from industrial processes is a major threat to the environment and health in East Asia. PM can cause asthma, collateral lung tissue damage, oxidative stress, allergic reactions, and inflammation. The present study was conducted to evaluate the protective effect of eckmaxol, a phlorotannin isolated from Ecklonia maxima, against PM-induced inflammation in MH-S macrophage cells. It was found that PM induced inflammation in MH-S lung macrophages, which was inhibited by eckmaxol treatment in a dose-dependent manner (21.0−84.12 µM). Eckmaxol attenuated the expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in PM-induced lung macrophages. Subsequently, nitric oxide (NO), prostaglandin E-2 (PGE-2), and pro-inflammatory cytokines (IL-1ß, IL-6, and TNF-α) were downregulated. PM stimulated inflammation in MH-S lung macrophages by activating Toll-like receptors (TLRs), nuclear factor-kappa B (NF-κB), and mitogen-activated protein kinase (MAPK) pathways. Eckmaxol exhibited anti-inflammatory properties by suppressing the activation of TLRs, downstream signaling of NF-κB (p50 and p65), and MAPK pathways, including c-Jun N-terminal kinase (JNK) and p38. These findings suggest that eckmaxol may offer substantial therapeutic potential in the treatment of inflammatory diseases.


Asunto(s)
Inflamación , Pulmón , Macrófagos , Material Particulado , Phaeophyceae , Neumonía , Polifenoles , Humanos , Ciclooxigenasa 2/metabolismo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Pulmón/efectos de los fármacos , Pulmón/patología , Macrófagos/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Material Particulado/toxicidad , Phaeophyceae/química , Receptores Toll-Like/metabolismo , Polifenoles/química , Polifenoles/farmacología , Polifenoles/uso terapéutico , Neumonía/inducido químicamente , Neumonía/tratamiento farmacológico
6.
J Food Biochem ; 46(12): e14498, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36350831

RESUMEN

This study examined the antiproliferative and apoptotic-inducing effects of Ecklonia maxima (KP) and Ulva rigida (URL) extracts in the human liver cancer (HepG2) cell line model. HepG2 cells were cultured and grown in an incubator (5% CO2 ) at 37°C. Cell viability was determined, while the effect of the extracts on apoptosis, ROS production, mitochondria membrane potential, and antioxidant enzymes were also assessed. KP and URL induced cytotoxic effects on HepG2 cells at the concentrations tested (0-1000 µg/ml). The morphological characteristics of the cells after treatment with KP and URL revealed cell shrinkage of the nucleus, cell injury, and damage compared to the control. The fluorescent micrographs from the apoptotic assay revealed induction of apoptosis and necrosis in HepG2 cells after treatment with KP and URL (200 and 400 µg/ml). The extracts also induced ROS production and reduced mitochondria membrane potential in HepG2 cells. The apoptotic-inducing effects, activation of ROS generation, and disruption of antioxidant enzymes are associated with the cytotoxic effects of the seaweed extracts. KP and URL showed good anticancer properties and could be explored as a good source of nutraceuticals, food additives, and dietary supplements to prevent uncontrolled proliferation of HepG2 cells. PRACTICAL APPLICATIONS: Seaweeds are reservoirs of nutrients and naturally occurring biologically active compounds, including sterols, phlorotannins, and polyunsaturated fatty acids. Due to the presence of these compounds, they are used as emulsifying agents, nutraceuticals, and additives in functional foods. Evidence suggests that seaweed bioactives may inhibit uncontrolled cell proliferation and induce apoptosis in cancer cells. Hence, exploring the antiproliferative and apoptotic-inducing effects of Ecklonia maxima and Ulva rigida will provide insights into their anticancer potentials as functional foods and nutraceuticals.


Asunto(s)
Phaeophyceae , Algas Marinas , Ulva , Humanos , Antioxidantes/farmacología , Especies Reactivas de Oxígeno/metabolismo , Células Hep G2 , Extractos Vegetales/farmacología , Apoptosis , Agua
7.
Gels ; 8(9)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36135260

RESUMEN

There is a need to develop sustainably sourced products that can address the needs for improved water retention in soils, slow the release rate of fertilizers (to prevent leaching and downstream eutrophication), and control soil pH for use in agriculture. This article investigates the use of industrial kelp solid waste extracted alginate (IW) slurries to produce soil amendment beads, potentially improving soil water retention, acting as slow-release fertilizers (SRFs), and combined with limestone controls soil pH levels. Alginate extracted from the IW was determined to have a lower guluronic (G) to mannuronic (M) acid ratio than pure laboratory-grade (LG) alginate (0.36 vs. 0.53). Hydrogels produced from the IW alginate achieved significantly higher equilibrium swelling ratios (1 wt% IW = 1.80) than LG hydrogels with similar concentrations (1 wt% LG = 0.61). Hydrogel beads were impregnated with ammonium nitrate and potassium chloride to produce potential SRFs. The release rates of K+ and NO3- nutrients from the produced SRFs into deionised water were decreased by one order of magnitude compared to pure salts. The nutrient release rates of the IW-based SRFs were shown to be similar to SRFs produced from LG alginate. Hydrogel beads were impregnated with limestone, and it was determined that the alginate-based hydrogels could significantly decrease the nutrient release rate. Using industrial kelp solid waste extracted alginate slurries shows potential for soil amendments production. This report emphasises, for the first time, the use of a crude alginate product in soil amendment formation. Further, it demonstrates slower release rates and soil pH control.

8.
Mar Drugs ; 20(9)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36135746

RESUMEN

Seaweeds are potential ingredients in the cosmeceutical industry. Our previous study demonstrates that the phlorotannin-enriched extract of Ecklonia maxima (EME-EA) containing dieckol and eckmaxol possesses strong anti-inflammatory activity and suggests the cosmeceutical potential of EME-EA. In order to evaluate the cosmeceutical potential of EME-EA, the anti-melanogenesis and photoprotective effects of EME-EA were investigated in this study. EME-EA remarkably inhibited mushroom tyrosinase and melanogenesis in alpha-melanocyte-stimulating hormone-stimulated B16F10 cells. In addition, EME-EA significantly suppressed UVB-induced HaCaT cell death that was consistent with inhibition of apoptosis and reduction in scavenging intracellular reactive oxygen species. Furthermore, EME-EA significantly inhibited collagen degradation and matrix metalloproteinases expression in UVB-irradiated HDF cells in a concentration-dependent manner. These results indicate that EME-EA possesses strong anti-melanogenesis and photoprotective activities and suggest EME-EA is an ideal ingredient in the pharmaceutical and cosmeceutical industries.


Asunto(s)
Cosmecéuticos , Phaeophyceae , Antiinflamatorios , Benzofuranos , Colágeno/metabolismo , Metaloproteinasas de la Matriz , Melaninas , Monofenol Monooxigenasa/metabolismo , Phaeophyceae/metabolismo , Especies Reactivas de Oxígeno , alfa-MSH/farmacología
9.
Mar Drugs ; 20(7)2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35877707

RESUMEN

Brown seaweeds contain fucoidan, which has numerous biological activities. Here, the anti-fine-dust activity of fucoidan extracted from Ecklonia maxima, an abundant brown seaweed from South Africa, was explored. Fourier transmittance infrared spectroscopy, high-performance anion-exchange chromatography with pulsed amperometric detection analysis of the monosaccharide content, and nuclear magnetic resonance were used for the structural characterization of the polysaccharides. The toll-like receptor (TLR)-mediated nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways were evaluated. The results revealed that E. maxima purified leaf fucoidan fraction 7 (EMLF7), which contained the highest sulfate content, showed the best anti-inflammatory activity by attenuating the TLR-mediated NF-κB/MAPK protein expressions in the particulate matter-stimulated cells. This was solidified by the successful reduction of Prostaglandin E2, NO, and pro-inflammatory cytokines, such as TNF-α, IL-6, and IL-1ß. The current findings confirm the anti-inflammatory activity of EMLF7, as well as the potential use of E. maxima as a low-cost fucoidan source due to its abundance. This suggests its further application as a functional ingredient in consumer products.


Asunto(s)
FN-kappa B , Phaeophyceae , Antiinflamatorios/química , Polvo , Lipopolisacáridos/farmacología , Macrófagos , FN-kappa B/metabolismo , Phaeophyceae/metabolismo , Polisacáridos/química , Transducción de Señal , Receptores Toll-Like/metabolismo
10.
Mar Drugs ; 20(8)2022 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-35892939

RESUMEN

Ecklonia maxima is a brown seaweed, which is abundantly distributed in South Africa. This study investigated an efficient approach using high-performance centrifugal partition chromatography (HPCPC), which has been successfully developed for the isolation and purification of phlorotannins, eckmaxol, and dieckol from the ethyl acetate fraction of E. maxima (EEM). We evaluated EEM for its inhibitory effect against lipopolysaccharide (LPS)-induced inflammatory responses in zebrafish embryos. The separation of eckmaxol and dieckol from samples of EEM using HPCPC was found to be of high purity and yield under an optimal solvent system composed of n-hexane:ethyl acetate:methanol:water (2:7:3:7, v/v/v/v). To evaluate the anti-inflammatory efficacy of EEM containing active compounds, zebrafish embryos exposed to LPS were compared with and without EEM treatment for nitric oxide (NO) production, reactive oxygen species (ROS) generation, and cell death two days after fertilization. These evaluations indicate that EEM alleviated inflammation by inhibiting cell death, ROS, and NO generation induced by LPS treatment. According to these results, eckmaxol and dieckol isolated from brown seaweed E. maxima could be considered effective anti-inflammatory agents as pharmaceutical and functional food ingredients.


Asunto(s)
Phaeophyceae , Algas Marinas , Animales , Antiinflamatorios/farmacología , Cromatografía Liquida , Lipopolisacáridos/farmacología , Óxido Nítrico/metabolismo , Phaeophyceae/química , Especies Reactivas de Oxígeno/metabolismo , Algas Marinas/metabolismo , Sudáfrica , Pez Cebra/metabolismo
11.
Plants (Basel) ; 10(5)2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33946268

RESUMEN

Modern viticultural areas are being confronted with the negative impacts of global warming on yield and fruit composition, with especially adverse effects on anthocyanin synthesis. Novel and sustainable tools, such as biostimulants, may represent a viable alternative to traditional cultural practices, thus promoting eco-friendly strategies to enhance the yield, fruit quality and abiotic stress tolerance of grapevines. 'Crimson Seedless' is a late-season red table grape variety, and due to climatic warming, its berries are frequently failing to acquire the commercially acceptable red color. Canopy applications of different biostimulants, namely, Kelpak®, Sunred®, Cytolan®, LalVigne™ Mature as well as Ethrel® Top, were tested on grapevine cv. Crimson Seedless grown under semi-arid Mediterranean conditions in order to evaluate their effects on yield and fruit quality. Some of the products were sprayed in canopies at labeled doses, and some were applied at doses reported in other studies. For the control treatment, canopies were sprayed with water. Sampling started at veraison and was repeated at 10-day intervals to measure the evolution of berry weight, length and diameter, as well as the total soluble solids and titratable acidity of the juice. The grapes were harvested when the berries of one of the treatments attained the commercially acceptable color. The greatest improvements in the red berry color were achieved with Sunred® (at a dose of 4 L ha-1) and Ethrel® Top (250 ppm plus glycerol at 1%), each applied at veraison and 10 days later. The different applications had varying effects on productivity and qualitative parameters. Only Sunred® improved the accumulation of anthocyanin and the overall acceptability of table grapes by consumers. The obtained results clearly demonstrate that applying Sunred® can improve the yield and qualitative parameters of the red table grape variety 'Crimson Seedless', indicating that this biostimulant could be a viable alternative to the most widely used plant growth regulator, ethephon.

12.
Antioxidants (Basel) ; 9(8)2020 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-32784879

RESUMEN

Sulfated polysaccharides prepared from marine algae are potential ingredients in nutraceutical, pharmaceutical, and cosmeceutical industries. In the present study, the antioxidant, anti-melanogenesis, and photoprotective effects of sulfated polysaccharides obtained from Ecklonia maxima (EMC) were investigated to evaluate their potential in cosmetic. EMC was successfully prepared through Celluclast-assisted extraction and ethanol precipitation, and it contained 79.88% of sulfated polysaccharides that with 69.37% carbohydrates and 10.51% sulfate. EMC effectively suppressed 2,2-azobis(2-amidinopropane) hydrochloride (AAPH)-induced oxidative stress in vitro in Vero cells and in vivo in zebrafish. Furthermore, EMC significantly inhibited mushroom tyrosinase and reduced melanin synthesis in alpha-melanocyte-stimulating hormone-stimulated B16F10 cells. In addition, EMC remarkably attenuated photodamage induced by UVB irradiation in vitro in human keratinocytes (HaCaT cells) and in vivo in zebrafish. Furthermore, EMC effectively inhibited wrinkle-related enzymes and improved collagen synthesis in UVB-irradiated human dermal fibroblasts (HDF cells). These results indicate that EMC possesses strong antioxidant, anti-melanogenesis, and photoprotective activities, and suggest that EMC may be an ideal ingredient in the pharmaceutical and cosmeceutical industries.

13.
Antioxidants (Basel) ; 9(7)2020 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-32635447

RESUMEN

The study analyzes the influence of plant growth promoters and biological control agents on the chemical composition and antioxidant activity (AA) in the sprouts of buckwheat. The AA of cv. Kora sprouts was higher than cv. Panda, with 110.0 µM Fe2+/g (FRAP-Ferric Reducing Antioxidant Power), 52.94 µM TRX (Trolox)/g (DPPH-1,1-diphenyl-2-picrylhydrazyl), 182.7 µM AAE (Ascorbic Acid Equivalent)/g (Photochemiluminescence-PCL-ACW-Water-Soluble Antioxidant Capacity) and 1.250 µM TRX/g (PCL-ACL-Lipid-Soluble Antioxidant Capacity). The highest AA was found in the sprouts grown from seeds soaked in Ecklonia maxima extract and Pythium oligandrum (121.31 µM Fe2+/g (FRAP), 56.33 µM TRX/g (DPPH), 195.6 µM AAE/g (PCL-ACW) and 1.568 µM TRX/g (PCL-ACL). These values show that the antioxidant potential of buckwheat sprouts is essentially due to the predominant hydrophilic fraction of antioxidants. The AA of the sprouts was strongly correlated with total polyphenol content.

14.
Int J Biol Macromol ; 151: 412-420, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32070744

RESUMEN

Ecklonia maxima, an endemic South African seaweed, is a potential source of beneficial bioactive compounds. Among these compounds, fucoidan, a sulphated polysaccharide has a wide range of bioactivities including anti-diabetic activity. In this study, fucoidan was extracted from E. maxima by the hot water extraction method and then characterised by colorimetric assays for sugar composition. The extraction from E. maxima yielded 6.89% fucoidan which was found to contain 4.45 ± 0.25% L-fucose and 6.01 ± 0.53% sulphate. The water extracted E. maxima fucoidan had a low molecular weight of approximately 10 kDa. Structural studies (FT-IR, NMR and XRD) confirmed the structure and integrity of the fucoidan to be similar to previously studied fucoidans in literature. Finally, the activities of starch digestive enzymes; α-amylase and α-glucosidase, were investigated in the presence of the E. maxima fucoidan extract. Fucoidan from E. maxima was observed to be a potent mixed-type inhibitor of α-glucosidase with an IC50 range of 0.27-0.31 mg.ml-1, which was significantly lower than the commercial anti-diabetic standard, acarbose. Our present study demonstrated that fucoidan from E. maxima is a more powerful inhibitor compared to some standard anti-diabetic compounds and thus shows great potential for managing type 2 diabetes.


Asunto(s)
Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/farmacología , Phaeophyceae/química , Polisacáridos/química , Polisacáridos/farmacología , alfa-Glucosidasas/química , Fraccionamiento Químico , Activación Enzimática/efectos de los fármacos , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Peso Molecular , Polimerizacion , Algas Marinas/química , Análisis Espectral , Almidón/química
15.
Mar Drugs ; 17(4)2019 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-30987394

RESUMEN

Phlorotannins are polyphenolic metabolites of marine brown algae that have been shown to possess health-beneficial biological activities. An efficient approach using a combination of high-speed counter-current chromatography (HSCCC) and size exclusion chromatography with a Sephadex LH-20 has been successfully developed for the isolation and purification of a neuroprotective phlorotannin, eckmaxol, from leaves of the marine brown algae, Ecklonia maxima. The phlorotannin of interest, eckmaxol, was isolated with purity >95% by HSCCC using an optimized solvent system composed of n-hexane-ethyl acetate-methanol-water (2:8:3:7, v/v/v/v) after Sephadex LH-20 size exclusion chromatography. This compound was successfully purified in the quantity of 5.2 mg from 0.3 kg of the E. maxima crude organic extract. The structure of eckmaxol was identified and assigned by NMR spectroscopic and mass spectrometric analyses. The purification method developed for eckmaxol will facilitate the further investigation and development of this neuroprotective agent as a drug lead or pharmacological probe. Furthermore, it is suggested that the combination of HSCCC and size exclusion chromatography could be more widely applied for the isolation and purification of phlorotannins from marine algae.


Asunto(s)
Organismos Acuáticos/química , Fraccionamiento Químico/métodos , Fármacos Neuroprotectores/aislamiento & purificación , Phaeophyceae/química , Polifenoles/aislamiento & purificación , Fraccionamiento Químico/instrumentación , Química Farmacéutica/métodos , Cromatografía en Gel/instrumentación , Cromatografía en Gel/métodos , Cromatografía Líquida de Alta Presión/instrumentación , Cromatografía Líquida de Alta Presión/métodos , Distribución en Contracorriente/instrumentación , Distribución en Contracorriente/métodos , Espectroscopía de Resonancia Magnética , Solventes/química , Espectrometría de Masa por Ionización de Electrospray/instrumentación , Espectrometría de Masa por Ionización de Electrospray/métodos
16.
Saudi J Biol Sci ; 25(3): 563-571, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29686520

RESUMEN

In the present study, application of Ecklonia maxima extract (Kelpak SL - a water soluble concentrate) was optimized and its impact on yield, nutraceutical and nutritional potential of Phaseolus vulgaris L. (var. Aura and Toska) was measured. The study was carried out in 2012 and 2013 in Poland. During the growing season, 0.2% and 0.4% solution of Kelpak SL was applied by single and double spraying of plants. These four treatments with Kelpak SL were compared with the control, where no biostimulator was applied. Kelpak SL treatments stimulated the yield of both cultivars studied. The application of E. maxima extract had no effect on the content of starch, free sugars or proteins in seeds of either of the tested cultivars. The highest level of phenolics was found for double sprayed Toska plants. All the tested variants of Kelpak SL application significantly increased the content of anthocyanins in the seeds. Also, both the reducing power and antiradical ability of Aura seeds were elevated in all the studied treatments. E. maxima extract is a natural, environmentally friendly and safe preparation increasing the yield and nutraceutical quality of beans without any negative effect on their nutritional quality.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA