Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 265
Filtrar
1.
Nat Geosci ; 17(2): 137-144, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39234159

RESUMEN

Vertical land movements can cause regional relative sea-level changes to differ substantially from climate-driven absolute sea-level changes. Whereas absolute sea level has been accurately monitored by satellite altimetry since 1992, there are limited observations of vertical land motion. Vertical land motion is generally modelled as a linear process, despite some evidence of nonlinear motion associated with tectonic activity, changes in surface loading or groundwater extraction. As a result, the temporal evolution of vertical land motion, and its contribution to projected sea-level rise and its uncertainty, remains unresolved. Here we generate a probabilistic vertical land motion reconstruction from 1995 to 2020 to determine the impact of regional-scale and nonlinear vertical land motion on relative sea-level projections up to 2150. We show that regional variations in projected coastal sea-level changes are equally influenced by vertical land motion and climate-driven processes, with vertical land motion driving relative sea-level changes of up to 50 cm by 2150. Accounting for nonlinear vertical land motion increases the uncertainty in projections by up to 1 m on a regional scale. Our results highlight the uncertainty in future coastal impacts and demonstrate the importance of including nonlinear vertical land motions in sea-level change projections.

2.
iScience ; 27(8): 110272, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39108716

RESUMEN

Mohr diagrams are a simple and effective method that can help geoscientists consider, model, and predict the ranges of mechanical properties of rock, stresses, fluid pressures, and the resultant fractures that are likely to occur in the sub-surface. Mohr diagrams can be used to make predictions about how rocks may respond to change, with a transition from a stable state to fracturing occurring if there are changes in (1) the failure envelope, (2) stresses, and/or (3) fluid pressure. This article uses Mohr diagrams to address two questions of significance to the energy transition. First, how will metasedimentary rocks, which are potential geothermal reservoir rocks, respond to thermal stimulation? Second, will fractures that may influence the underground storage of radioactive waste develop in a clay sequence during exhumation? Mohr diagrams are shown to be useful for highlighting misconceptions and input data problems, leading to improved understanding of how structures develop.

3.
Nature ; 632(8025): 490-492, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39143339
4.
iScience ; 27(7): 110311, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39092181

RESUMEN

Urban centers located on the coast expose some of the most vulnerable populations to the effects of climate change. In addition to the challenges faced by high population densities and interdependent social-ecological systems, there is an increasing demand for resources. Exposing the pinch points that are already sensitive to extreme weather, highlights the urban systems that will be least resilient in the face of climate change. We map the projected changes in water availability onto the components of the food-water-energy Nexus at several spatial scales. Resilience thinking acknowledges the different spatial scales at which governance operates, resilience occurs, and Nexus systems function. We use a case study to illustrate how the effects of climate change at locations remote from the city could impact resilience of urban communities in multiple ways through cascading effects from the Nexus. This article underscores the need to examine resilience from multiple spatial and governance angles.

5.
iScience ; 27(7): 110236, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39015147

RESUMEN

The reduction in sea ice cover with Arctic warming facilitates shipping through remarkably shorter shipping routes. Automatic identification system (AIS) is a powerful data source to monitor Arctic Ocean shipping. Based on the AIS data from an online platform, we quantified the spatial distribution of shipping through this area, its intensity, and the seasonal variation. Shipping was heterogeneously distributed with power-law exponents that depended on the vessel category. We contextualized the estimated exponents with the analytical distribution of a transit model in one and two dimensions. Fishing vessels had the largest spatial spread, while narrower shipping routes associated with cargo and tanker vessels had a width correlated with the sea ice area. The time evolution of these routes showed extended periods of shipping activity through the year. We used AIS data to quantify recent Arctic shipping, which brings an opportunity for shorter routes, but likely impacting the Arctic ecosystem.

6.
iScience ; 27(7): 110249, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39027367

RESUMEN

Cleaner heating policies aim to reduce air pollution and may bring about health benefits to individuals. Based on a fixed-effect model focusing on Beijing, this study found that after the onset of air pollution, daily clinic visits, hospitalization days, and hospitalization expenses increased several days after the occurrence of air pollution. These hospitalization changes were observed in males and females and three different age groups. A difference-in-differences (DID) model was constructed to identify the influences of cleaner heating policies on health consequences. The study revealed that the policy positively affects health outcomes, with an average decrease of 3.28 thousand clinic visits for all diseases. The total hospitalization days and expenses tend to decrease by 0.22 thousand days and 0.34 million CNY (Chinese Yuan), respectively. Furthermore, implementing the policy significantly reduced the number of daily clinic visits for respiratory diseases, asthma, stroke, diabetes, and chronic obstructive pulmonary diseases (COPDs).

7.
iScience ; 27(7): 110066, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38989469

RESUMEN

In light of the increasing vulnerability to drought occurrences and the heightened impact of drought-related disasters on numerous communities, it is imperative for drought-sensitive sectors to adopt proactive measures. This involves the implementation of early warning systems to effectively mitigate potential risks. Guided by Toulmin's model of argumentation, this research proposes a framework of eight interconnected modules introducing Fourth Industrial Revolution technologies to enhance drought early warning capabilities. The framework emphasizes the Internet of Things, drones, big data analytics, and deep learning for real-time monitoring and accurate drought forecasts. Another key component is the role of natural language processing in analyzing data from unstructured sources, such as social media, and reviews, essential for improving alerts, dissemination, and interoperability. While the framework optimizes resource use in agriculture, water, and the environment, overcoming impending limitations is crucial; hence, practical implementation and amendment of policies are necessary.

8.
iScience ; 27(6): 110107, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38947528

RESUMEN

The Ediacaran of Newfoundland preserves some of the oldest complex macroscopic communities, several of which are dominated by the fractal-like rangeomorph genus Fractofusus. Here we use computational fluid dynamics and a detailed reconstruction of Fractofusus misrai to document for the first time hydrodynamic phenomena associated with this sediment-reclining organism and its rangeomorph elements that are relevant to interpreting feeding strategies, explain the recently documented rheotropic growth oblique to currents, and provide insights into their impact on the Ediacaran seafloor. Obliquely oriented Fractofusus are common, likely representing a compromise between maximized aspect ratio and minimization of drag. Flow patterns on the upper surface of Fractofusus are consistent with the collection of dissolved and finely particulate nutrients, as well as gas exchange. Fractofusus produce a wake downstream, demonstrating that reclining rangeomorphs had potential to modify sedimentation patterns on the ancient seafloor by potentially allowing deposition of fine-grained sediment.

9.
iScience ; 27(6): 110106, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39055607

RESUMEN

Climate change carries important effects on human wellbeing and performance, and increasingly research is documenting the negative impacts of out-of-comfort temperatures on workplace performance. In this study, we investigate the plausibly causal effect of extreme temperatures, i.e., out-of-comfort, on language complexity among politicians, leveraging a fixed effects strategy. We analyze language complexity in over seven million parliamentary speeches across eight countries, connecting them with precise daily meteorological information. We find hot days reduce politicians' language complexity, but not cold days. Focusing on one country, we explore marginal effects by age and gender, suggesting high temperatures significantly impact older politicians at lower thresholds. The findings propose that political rhetoric is not only driven by political circumstances and strategic concerns but also by physiological responses to external environmental factors. Overall, the study holds important implications on how climate change could affect human cognitive performance and the quality of political discourse.

10.
STAR Protoc ; 5(2): 103124, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38870017

RESUMEN

Global warming will change the photosynthesis and transpiration of plants greatly and ultimately affect water use efficiency (WUE). Here, we present a protocol to investigate the response of maize WUE to the coupling effect of CO2 and temperature at ear stage using a specialized designed gradient. We describe steps for plant culture, parameter measurements, model fitting, and statistical analysis. This protocol holds potential for studying the response of WUE and CO2 adaptation across various plant species. For complete details on the use and execution of this protocol, please refer to Sun et al.1.


Asunto(s)
Dióxido de Carbono , Fotosíntesis , Temperatura , Zea mays , Zea mays/fisiología , Dióxido de Carbono/metabolismo , Fotosíntesis/fisiología , Agua/metabolismo , Transpiración de Plantas/fisiología
11.
iScience ; 27(6): 109957, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38827410

RESUMEN

The subsurface is pivotal in the energy transition, for the sequestration of CO2 and energy storage. It is crucial to understand to what extent geological faults may form leakage pathways that threaten the containment integrity of these projects. Fault flow behavior has been studied in the context of hydrocarbon development, supported by observations from wells drilled through faults, but such observations are rare in geoenergy projects. Focusing on mechanical behavior as early indicator of potential leakage risks, a probabilistic Coulomb Failure Stress workflow is developed and demonstrated using data from the Decatur CO2 sequestration project to rank faults based on their containment risk. The analysis emphasizes the importance of fault throw relative to reservoir thickness and pore pressure change in assessing reactivation risks. Integrating this mechanical assessment with geological and dynamic fault analyses contributes to derisking fault containment for geoenergy applications, providing valuable insights for the successful development of subsurface storage projects.

12.
iScience ; 27(6): 109812, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38784017

RESUMEN

While artificial intelligence (AI) offers promising solutions to address climate change impacts, it also raises many application limitations and challenges. A risk governance perspective is used to analyze the role of AI in supporting decision-making for climate adaptation, spanning risk assessment, policy analysis, and implementation. This comprehensive review combines expert insights and systematic literature review. The study's findings indicate a large emphasis on applying AI to climate "risk assessments," particularly regarding hazard and exposure assessment, but a lack of innovative approaches and tools to evaluate resilience and vulnerability as well as prioritization and implementation process, all of which involve subjective, qualitative, and context-specific elements. Additionally, the study points out challenges such as difficulty of simulating complex long-term changes, and evolving policies and human behavior, reliance on data quality and computational resources, and the need for improved interpretability of results as areas requiring further development.

13.
Nature ; 629(8012): 538-539, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38719959
14.
iScience ; 27(5): 109598, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38799075

RESUMEN

The Longxiang tracksite (lower Upper Cretaceous, Shanghang Basin) includes twelve didactyl deinonychosaur tracks that fall into two morphologies, differentiated by both size and form. The smaller tracks (∼11 cm long) are referable to the ichnogenus Velociraptorichnus. The larger tracks (∼36 cm long) establish the ichnotaxon Fujianipus yingliangi. Based on the size of the tracks, F. yingliangi has an estimated hip height of over 1.8 m, a size comparable to that of the largest known deinonychosaurs, i.e., Austroraptor and Utahraptor. The reduced form of digit IV, relative to digit III, indicates that F. yingliangi is a probable troodontid. Gigantism evidently evolved independently at least four times within the Deinonychosauria and within at least three major lineages: the Eudromaeosauria, Unenlagiidae, and Troodontidae. In the mid-Cretaceous of Asia, the evolution of F. yingliangi overlapped with that of early large-bodied tyrannosauroids and with previously established large allosaurids (although the latter may have been in decline).

15.
NPJ Nat Hazards ; 1(1): 7, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38726463

RESUMEN

A new time-dependent probabilistic tsunami risk model is developed to facilitate the long-term risk management strategies for coastal communities. The model incorporates the time-dependency of earthquake occurrence and considers numerous heterogeneous slip distributions via a stochastic source modeling approach. Tidal level effects are examined by considering different baseline sea levels. The model is applied to Tofino, British Columbia, Canada within the Cascadia subduction zone. High-resolution topography and high-quality exposure data are utilized to accurately evaluate tsunami damage and economic loss to buildings. The results are tsunami loss curves accounting for different elapsed times since the last major event. The evolutionary aspects of Tofino's time-dependent tsunami risk profiles show that the current tsunami risk is lower than the tsunami risk based on the conventional time-independent Poisson occurrence model. In contrast, the future tsunami risk in 2100 will exceed the time-independent tsunami risk estimate.

16.
iScience ; 27(6): 109905, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38799561

RESUMEN

Tropical cyclone (TC) intensity change forecasting remains challenging due to the lack of understanding of the interactions between TC changes and environmental parameters, and the high uncertainties resulting from climate change. This study proposed hybrid convolutional neural networks (hybrid-CNN), which effectively combined satellite-based spatial characteristics and numerical prediction model outputs, to forecast TC intensity with lead times of 24, 48, and 72 h. The models were validated against best track data by TC category and phase and compared with the Korea Meteorological Administrator (KMA)-based TC forecasts. The hybrid-CNN-based forecasts outperformed KMA-based forecasts, exhibiting up to 22%, 110%, and 7% improvement in skill scores for the 24-, 48-, and 72-h forecasts, respectively. For rapid intensification cases, the models exhibited improvements of 62%, 87%, and 50% over KMA-based forecasts for the three lead times. Moreover, explainable deep learning demonstrated hybrid-CNN's potential in predicting TC intensity and contributing to the TC forecasting field.

17.
iScience ; 27(5): 109613, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38638563

RESUMEN

Evidence of hot and cold igneous processes has been reported in small satellites and dwarf planets of the Solar System. Olivine and pyroxenes were detected in the spectral bands of both small satellites and dwarf planets. The aqueously altered form of olivine and serpentine has been detected in the spectrums of Ceres and Miranda hinting at possible hydrothermal processes in their interiors. Once more, the ubiquitous distribution of 26Al in the planetary nebula, then evolving in the protoplanetary disk, contributed to the primordial widespread heating. Volcanism, or cryovolcanism, then developed only in those bodies where long-lived radiogenic elements, and/or tidal processes, were available.

19.
Proc Natl Acad Sci U S A ; 121(19): e2209196121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38640256

RESUMEN

Increasing the speed of scientific progress is urgently needed to address the many challenges associated with the biosphere in the Anthropocene. Consequently, the critical question becomes: How can science most rapidly progress to address large, complex global problems? We suggest that the lag in the development of a more predictive science of the biosphere is not only because the biosphere is so much more complex, or because we do not have enough data, or are not doing enough experiments, but, in large part, because of unresolved tension between the three dominant scientific cultures that pervade the research community. We introduce and explain the concept of the three scientific cultures and present a novel analysis of their characteristics, supported by examples and a formal mathematical definition/representation of what this means and implies. The three cultures operate, to varying degrees, across all of science. However, within the biosciences, and in contrast to some of the other sciences, they remain relatively more separated, and their lack of integration has hindered their potential power and insight. Our solution to accelerating a broader, predictive science of the biosphere is to enhance integration of scientific cultures. The process of integration-Scientific Transculturalism-recognizes that the push for interdisciplinary research, in general, is just not enough. Unless these cultures of science are formally appreciated and their thinking iteratively integrated into scientific discovery and advancement, there will continue to be numerous significant challenges that will increasingly limit forecasting and prediction efforts.


Asunto(s)
Predicción , Matemática
20.
iScience ; 27(4): 109446, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38550999

RESUMEN

The Hunga Tonga-Hunga Ha'apai (HTHH) volcano eruption received worldwide attention due to its magnitude and potential effects on environment and climate. However, the operational sulfur dioxide (SO2) products mis-estimated SO2 emissions under volcanic conditions due to large uncertainties in the assumptions of SO2 plume altitude. That might have occurred in previous volcanic eruptions and misled understanding of the evolution of sulfate aerosols in the atmosphere and their impact on global climate. Here, we simultaneously retrieved the volcanic SO2 and its plume altitude from the Troposphere Monitoring Instrument (TROPOMI) and the Environment Monitoring Instrument-2 (EMI-2), exploring the SO2 burden, distribution, and evolution from January 14 to 17. We captured multiple eruptions with the second eruption emitting far more SO2 than the first. Total emissions exceeded 900 kt, significantly higher than those from operational products. Our inferred emission fluxes and injection heights offer valuable references for climate modeling and submarine volcano studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA