Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.199
Filtrar
1.
Arq. bras. oftalmol ; 88(1): e2023, 2025. graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1568848

RESUMEN

ABSTRACT Purpose: The epithelial-mesenchymal transition of human lens epithelial cells plays a role in posterior capsule opacification, a fibrotic process that leads to a common type of cataract. Hyaluronic acid has been implicated in this fibrosis. Studies have investigated the role of transforming growth factor (TGF)-β2 in epithelial-mesenchymal transition. However, the role of TGF-β2 in hyaluronic acid-mediated fibrosis of lens epithelial cell remains unknown. We here examined the role of TGF-β2 in the hyaluronic acid-mediated epithelial-mesenchymal transition of lens epithelial cells. Methods: Cultured human lens epithelial cells (HLEB3) were infected with CD44-siRNA by using the Lipofectamine 3000 transfection reagent. The CCK-8 kit was used to measure cell viability, and the scratch assay was used to determine cell migration. Cell oxidative stress was analyzed in a dichloro-dihydro-fluorescein diacetate assay and by using a flow cytometer. The TGF-β2 level in HLEB3 cells was examined through immunohistochemical staining. The TGF-β2 protein level was determined through western blotting. mRNA expression levels were determined through quantitative real-time polymerase chain reaction. Results: Treatment with hyaluronic acid (1.0 μM, 24 h) increased the epithelial-mesenchymal transition of HLEB3 cells. The increase in TGF-β2 levels corresponded to an increase in CD44 levels in the culture medium. However, blocking the CD44 function significantly reduced the TGF-β2-mediated epithelial-mesenchymal transition response of HLEB3 cells. Conclusions: Our study showed that both CD44 and TGF-β2 are critical contributors to the hyaluronic acid-mediated epithelial-mesenchymal transition of lens epithelial cells, and that TGF-β2 in epithelial-mesenchymal transition is regulated by CD44. These results suggest that CD44 could be used as a target for preventing hyaluronic acid-induced posterior capsule opacification. Our findings suggest that CD44/TGF-β2 is crucial for the hyaluronic acid-induced epithelial-mesenchymal transition of lens epithelial cells.

2.
J Environ Sci (China) ; 149: 676-687, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181677

RESUMEN

Epithelial-mesenchymal transition (EMT) plays an irreplaceable role in the development of silicosis. However, molecular mechanisms of EMT induced by silica exposure still remain to be addressed. Herein, metabolic profiles of human alveolar type II epithelial cells (A549 cells) exposed directly to silica were characterized using non-targeted metabolomic approaches. A total of 84 differential metabolites (DMs) were identified in silica-treated A549 cells undergoing EMT, which were mainly enriched in metabolisms of amino acids (e.g., glutamate, alanine, aspartate), purine metabolism, glycolysis, etc. The number of DMs identified in the A549 cells obviously increased with the elevated exposure concentration of silica. Remarkably, glutamine catabolism was significantly promoted in the silica-treated A549 cells, and the levels of related metabolites (e.g., succinate) and enzymes (e.g., α-ketoglutarate (α-KG) dehydrogenase) were substantially up-regulated, with a preference to α-KG pathway. Supplementation of glutamine into the cell culture could substantially enhance the expression levels of both EMT-related markers and Snail (zinc finger transcription factor). Our results suggest that the EMT of human alveolar epithelial cells directly induced by silica can be essential to the development of silicosis.


Asunto(s)
Células Epiteliales Alveolares , Transición Epitelial-Mesenquimal , Dióxido de Silicio , Humanos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Dióxido de Silicio/toxicidad , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/efectos de los fármacos , Células A549 , Silicosis/metabolismo , Metaboloma/efectos de los fármacos
3.
Int J Mol Sci ; 25(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39273330

RESUMEN

In this study, we assessed the impact of hepatocyte growth factor (HGF) on corneal endothelial cells (CECs), finding that HGF concentrations of 100-250 ng/mL significantly increased CEC proliferation by 30%, migration by 32% and improved survival under oxidative stress by 28% compared to untreated controls (p < 0.05). The primary objective was to identify non-fibrotic pharmacological strategies to enhance corneal endothelial regeneration, addressing a critical need in conditions like Fuchs' endothelial dystrophy (FED), where donor tissue is scarce. To confirm the endothelial nature of the cultured CECs, Na+/K+-ATPase immunohistochemistry was performed. Proliferation rates were determined through BrdU incorporation assays, while cell migration was assessed via scratch assays. Cell viability was evaluated under normal and oxidative stress conditions using WST-1 assays. To ensure that HGF treatment did not trigger epithelial-mesenchymal transition, which could lead to undesirable fibrotic changes, α-SMA staining was conducted. These comprehensive methodologies provided robust data on the effects of HGF, confirming its potential as a therapeutic agent for corneal endothelial repair without inducing harmful EMT, as indicated by the absence of α-SMA expression. These findings suggest that HGF holds therapeutic promise for enhancing corneal endothelial repair, warranting further investigation in in vivo models to confirm its clinical applicability.


Asunto(s)
Movimiento Celular , Proliferación Celular , Endotelio Corneal , Factor de Crecimiento de Hepatocito , Cicatrización de Heridas , Factor de Crecimiento de Hepatocito/metabolismo , Factor de Crecimiento de Hepatocito/farmacología , Endotelio Corneal/efectos de los fármacos , Endotelio Corneal/metabolismo , Humanos , Cicatrización de Heridas/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Estrés Oxidativo/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Distrofia Endotelial de Fuchs/tratamiento farmacológico , Distrofia Endotelial de Fuchs/metabolismo , Distrofia Endotelial de Fuchs/patología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
4.
Cell Mol Life Sci ; 81(1): 404, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39277835

RESUMEN

Proliferation of renal tubular epithelial cells (TEC) is essential for restoring tubular integrity and thereby to support renal functional recovery from kidney ischemia/reperfusion (KI/R) injury. Activation of transcriptional factor c-Myc promotes TEC proliferation following KI/R; however, the mechanism regarding c-Myc activation in TEC is incompletely known. Heat shock protein A12A (HSPA12A) is an atypic member of HSP70 family. In this study, we found that KI/R decreased HSPA12A expression in mouse kidneys and TEC, while ablation of HSPA12A in mice impaired TEC proliferation and renal functional recovery following KI/R. Gain-of-functional studies demonstrated that HSPA12A promoted TEC proliferation upon hypoxia/reoxygenation (H/R) through directly interacting with c-Myc and enhancing its nuclear localization to upregulate expression of its target genes related to TEC proliferation. Notably, c-Myc was lactylated in TEC after H/R, and this lactylation was enhanced by HSPA12A overexpression. Importantly, inhibition of c-Myc lactylation attenuated the HSPA12A-induced increases of c-Myc nuclear localization, proliferation-related gene expression, and TEC proliferation. Further experiments revealed that HSPA12A promoted c-Myc lactylation via increasing the glycolysis-derived lactate generation in a Hif1α-dependent manner. The results unraveled a role of HSPA12A in promoting TEC proliferation and facilitating renal recovery following KI/R, and this role of HSPA12A was achieved through increasing lactylation-mediated c-Myc activation. Therefore, targeting HSPA12A in TEC might be a viable strategy to promote renal functional recovery from KI/R injury in patients.


Asunto(s)
Proliferación Celular , Células Epiteliales , Proteínas HSP70 de Choque Térmico , Túbulos Renales , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-myc , Daño por Reperfusión , Animales , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Daño por Reperfusión/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Ratones , Células Epiteliales/metabolismo , Células Epiteliales/patología , Túbulos Renales/metabolismo , Túbulos Renales/patología , Masculino , Humanos , Riñón/metabolismo , Riñón/patología
5.
Regen Ther ; 26: 620-634, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39281109

RESUMEN

Age associated macular degeneration is the 3rd primary cause of blind fundus diseases globally. A reliable and long-lasting method of intraocular drug delivery is still needed. Herein, this study was aim to develop the novel fabrication of ranibizumab loaded co-polymeric nanomicelles (Rabz-CP-NMs) for AMD. The CMC of co-polymeric nanomicelles was determined to be low, at 6.2 µg/ml. The ring copolymerization method was employed to fabricate the NMs and characterize via FTIR, XRD, TEM, DLS and Zeta potential. Rabz-CP-NMs was spherical shape with 10-50 nm in size. Stable and prolonged drug release was achieved with the Rabz from CP-NMs at 48 h. D407 and ARPE19 ocular cell lines showed dose-dependent cell viability with Rabz-CP-NMs. The Rabz-CP-NMs also had less toxicity, higher uptake, lower cell death and prolonged VEGF-A inhibition, as shown by cytoviability assay. Thus, Rabz-CP-NMs were safe for ocular use, suggesting that could be used to improve intraocular AMD treatment.

6.
Zygote ; : 1-10, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39291681

RESUMEN

Endometrial receptivity is the ability of the endometrium to accept embryos. Thus, endometrial receptivity dysfunction is an important factor leading to embryo implantation failure. A good endometrial receptivity provides a suitable environment for embryo implantation, improving the embryo implantation rate. The "implantation window" stage, or the receptive stage of the endometrium, is regulated by various hormones, genes, proteins and cytokines, among which microRNAs (miRNAs) and their target genes have a regulatory effect on endometrial receptivity. This review outlines the relationship between endometrial receptivity and pregnancy, the mRNAs and related signalling pathways that regulate endometrial receptivity, and the regulatory role of miRNA in endometrial receptivity, providing a deeper understanding of the regulatory mechanisms of miRNA on endometrial receptivity in humans and animals and reference for the endometrial receptivity-related research.

7.
Toxicol Lett ; 401: 55-70, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39245427

RESUMEN

BACKGROUND: Silica particles can cause silicosis, a disease characterized by diffuse fibrosis of the lungs. Various signaling pathways composed of different types of cells and cytokines are involved in the development of silicosis. Exosomes have become a research hotspot recently. However, the role of exosomal microRNA (miRNA) in silicosis remains unclear. METHODS: In this study, we generated exosomal miRNA sequences from exosomes isolated from bronchoalveolar lavage fluid (BALF) of silicosis patients and the control group by high-throughput sequencing. Functional annotation and analysis of miRNA identified key target miRNAs. Levels of target miRNAs were analyzed in patient and animal samples and cells. Effects of increased miRNA were assessed through protein levels in target signaling pathways in cells treated with silica, miRNA mimics, and inhibitors. RESULTS: Our study identified 40 up-regulated and 70 down-regulated miRNAs, with miR-552-3p and its putative target gene Caveolin 1 (CAV1) as targets for further research. We found that the levels of exosomal miR-552-3p increased in silicosis patients' BALF samples, silicosis model mice, and A549 cells exposed to silica. Inhibition of miR-552-3p suppressed the expression of fibrosis markers. The increased miR-552-3p leads to the up-regulation of fibronectin and α-smooth muscle actin (α-SMA) and the suppression of caveolin 1 in fibroblast cells. Mitogen-activated protein kinase (MAPK) signaling pathways are activated in cells treated with silica and miR-552-3p mimics. CONCLUSIONS: These results help to understand exosomal miRNA-mediated intercellular communication and its key role in fibroblast activation and silicosis.

8.
Artículo en Inglés | MEDLINE | ID: mdl-39285673

RESUMEN

BACKGROUND AND AIM: Selenium, an essential micronutrient for humans, has been shown to be protective against ulcerative colitis (UC), but the exact mechanism remains unclear. The role of selenium, protecting against ferroptosis of intestinal epithelial cells (IECs) in colitis, was investigated in this current study. METHODS: Serum selenium level and ferroptosis-related gene expression in the colonic mucosa were measured in UC patients and healthy controls. The effects of sodium selenite supplementation on experimental colitis were investigated in dextran sulfate sodium (DSS)-treated mice. The influence of sodium selenite on IEC ferroptosis was evaluated through assessing cell death rate, intracellular ferrous iron content, lipid reactive oxygen species level, and mitochondrial membrane damage of DSS-treated Caco-2 cells. Moreover, glutathione peroxidase 4 (GPX4) and acyl-CoA synthetase long-chain family member 4, ferroptosis-related genes, were detected in Caco-2 cells and mouse intestines. RESULTS: Serum selenium was decreased in UC patients in comparison with healthy individuals. Additionally, serum selenium level was negatively correlated with disease activity and was associated with clinical inflammation and nutrition indicators. The expression of GPX4 in the mucosa of UC was positively correlated with serum selenium level. The in vivo experiments showed that selenium treatment ameliorated DSS-induced colitis and inhibited ferroptosis in IECs. The in vitro results suggested that selenium supplementation inhibited DSS-induced ferroptosis in Caco-2 cells. GPX4 was upregulated after selenium supplementation both in vivo and in vitro. CONCLUSIONS: Serum selenium level was associated with IEC ferroptosis in UC patients. Selenium supplementation alleviates DSS-induced colitis and inhibits ferroptosis in IECs by upregulating the expression of GPX4.

9.
Exp Eye Res ; : 110097, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39284505

RESUMEN

Proliferation and transdifferentiation of the retinal pigment epithelium (RPE) are hallmarks of proliferative vitreoretinopathy (PVR); however, the critical regulators of this process remain to be elucidated. Here, we investigated the role of tenascin-C in PVR development. In vitro, exposure of human ARPE-19 (hRPE) cells to TGF-ß2 increased tenascin-C expression. Tenascin-C was shown to be involved in TGF-ß2-induced transdifferentiation of hRPE cells, which was inhibited by pretreatment with tenascin-C siRNA. In PVR mouse models, a marked increase in the expression of tenascin-C mRNA and protein was observed. Additionally, immunofluorescence analysis demonstrated a dramatic increase in the colocalization of tenascin-C with RPE65 or α-smooth muscle actin(α-SMA) in the epiretinal membranes of patients with PVR. There was also abundant expression of integrin αV and ß-catenin in the PVR membranes. ICG-001, a ß-catenin inhibitor, efficiently attenuated PVR progression in a PVR animal model. These findings suggest that tenascin-C is secreted by transdifferentiated RPE cells and promotes the development of PVR via the integrin αV and ß-catenin pathways. Therefore, tenascin-C could be a potential therapeutic target for the inhibition of epiretinal membrane development associated with PVR.

10.
Toxicol Lett ; 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39284537

RESUMEN

Mitochondrial abnormalities in lung epithelial cells have been associated with chronic obstructive pulmonary disease (COPD) pathogenesis. Cigarette smoke (CS) can induce alterations in the molecular pathways regulating mitochondrial function in lung epithelial cells. Recently, heated tobacco products (HTPs) have been marketed as harm reduction products compared with regular cigarettes. However, the effects of HTP emissions on human alveolar epithelial cell metabolism and on the molecular mechanisms regulating mitochondrial content and function are unclear. In this study, human alveolar epithelial cells (A549) were exposed to cigarette or HTP emissions in the form of liquid extracts. The oxygen consumption rate of differently exposed cells was measured, and mRNA and protein abundancy of key molecules involved in the molecular regulation of mitochondrial metabolism were assessed. Furthermore, we used a mitophagy detection probe to visualize mitochondrial breakdown over time in response to the extracts. Both types of extracts induced increases in basal-, maximal- and spare respiratory capacity, as well as in cellular ATP production. Moreover, we observed alterations in the abundancy of regulatory molecules controlling mitochondrial biogenesis and mitophagy. Mitophagy was not significantly altered in response to the extracts, as no significant differences compared to vehicle-treated cells were observed.

11.
J Transl Med ; 22(1): 844, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285426

RESUMEN

BACKGROUND: Ocular toxicity is a severe adverse effect that limits the chronic clinical use of the antiarrhythmic drug amiodarone. Here, we aimed to evaluate the cytoprotective effect of artemisinin and explore the potential signalling pathways in human retinal pigment epithelial (RPE) cell cultures. METHODS: D407 cell cultures were exposed to amiodarone and the impact of artemisinin was evaluated. The key parameters included lactate dehydrogenase (LDH) release, intracellular reactive oxygen species (ROS) generation, and the mitochondrial membrane potential (MMP). We also assessed the protein levels of cleaved caspase-3, cleaved poly (ADP-ribose) polymerase (PARP), phosphorylated adenosine monophosphate-activated protein kinase (AMPK)ɑ (p-AMPK), calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2), and nuclear factor erythroid 2-related factor 2 (Nrf2). RESULTS: Artemisinin reduced the cytotoxicity induced by amiodarone, as reflected by decreased LDH release, ROS generation, and MMP disruption. Additionally, artemisinin increased p-AMPK, CaMKK2, and Nrf2 protein levels. Inhibition of AMPK, CaMKK2, or Nrf2 abolished the cytoprotective effect of artemisinin. AMPK activation and Nrf2 knockdown further supported its protective role. CONCLUSIONS: Artemisinin protected RPE cells from amiodarone-induced damage via the CaMKK2/AMPK/Nrf2 pathway. The in vivo experiments in mice confirmed its efficacy in preventing retinal injury caused by amiodarone. These results suggest that an artemisinin-based eye formulation could be repurposed for treating amiodarone-induced ocular toxicity.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Amiodarona , Artemisininas , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina , Citoprotección , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Especies Reactivas de Oxígeno , Epitelio Pigmentado de la Retina , Transducción de Señal , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Humanos , Epitelio Pigmentado de la Retina/efectos de los fármacos , Epitelio Pigmentado de la Retina/patología , Epitelio Pigmentado de la Retina/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Citoprotección/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Amiodarona/efectos adversos , Amiodarona/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Artemisininas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Línea Celular , Ratones , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología
12.
Artículo en Inglés | MEDLINE | ID: mdl-39279690

RESUMEN

Fungal infections contribute to over 1.5 million fatalities each year, with cutaneous mycoses standing as prominent global infections. The spectrum of these mycoses varies widely, encompassing enduring afflictions like ringworm, localized infections such as tinea capitis, recurrent instances like vaginal candidiasis, and potentially fatal systemic infections impacting multiple organ systems. The escalating recognition of the health and socioeconomic ramifications associated with fungal pathogens underscores their importance in contemporary discourse. On a global scale, projections indicate that over 300 million individuals experience significant fungal infections annually, resulting in a mortality rate exceeding 1.5 million deaths per year. Alarmingly, resistance to commonly used antifungal drugs was on the rise, with some reports suggesting that over 10% of Candida bloodstream isolates worldwide were resistant to fluconazole, a commonly prescribed antifungal medication. Therefore, there is an immediate need to increase the accessibility of new antifungal medications while minimizing their costs and adverse effects. Fungi, as heterotrophic organisms, acquire nutrients through absorption. Their filamentous structure, composed of hyphae, facilitates efficient nutrient uptake by secreting enzymes that break down complex organic matter into simpler compounds. These organisms exhibit remarkable adaptability in responding to environmental cues, adjusting growth rates, and altering morphological features. Fungi regulate their metabolism intricately, undergoing various metabolic pathways for energy production and utilizing diverse substrates for respiration. Additionally, they exhibit distinctive reproductive strategies, employing both sexual and asexual modes of reproduction, contributing to their genetic diversity and resilience in diverse ecosystems. We now have more information than ever on the origins of infection as well as the physiology of fungi cells, giving us the chance to use it to produce new generations of antifungals. This review includes various novel antifungal drug targets showing their possible effects via different mechanisms aiming at vital functions like GPI synthesis, cell wall synthesis, hyphal growth, and other essential pathways responsible for fungal growth.

13.
Animals (Basel) ; 14(17)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39272362

RESUMEN

Tea tree oil (TTO) improves the intestinal mucosal immunity of weaning piglets, but its underlying mechanism is not clear. We hypothesized that TTO may alleviate inflammatory injury by regulating the function of intestinal epithelial cells. Ileum epithelial cells (IPI-2I) were chosen and an inflammatory injury cell model was generated. The cell viability, cytokine secretion, and gene expression of TLR4 and NF-κB were measured to further evaluate the effects of TTO on the inflammatory injury in immune-stressed cells. The results showed that lipopolysaccharide (LPS; content: ≥30 µg/mL; time: 3 h, 6 h, or 9 h) decreased cell viability (p < 0.01), and 50 µg/mL LPS stimulated for 6 h resulted in an increased secretion of proinflammatory cytokines and a dramatically decreased secretion of anti-inflammatory cytokines (p < 0.05) in IPI-2I cells. Concentrations of 0-0.05% of TTO improved cell viability, while the 0.03% TTO treatment resulted in the highest cell viability and alleviated LPS-induced cell death (p < 0.01). In addition, 0.03% TTO alleviated the LPS-induced increase in the gene expression of IL-1ß, TNFα, and IFNγ, as well as the decrease in the expression of IL-10 in IPI-2I cells (p < 0.05). LPS also upregulated the gene expression of TLR4 and NF-κB (p < 0.05); while TTO supplementation alleviated this effect (p < 0.05), 0.03% and 0.05% TTO supplementation had greater effects (p < 0.05). In conclusion, 50 µg/mL LPS stimulated for 6 h can be used to establish an immune-stressed cell model in IPI-2I cell lines, and 0.03% TTO treatment for 6 h alleviated inflammatory injury in the intestinal epithelial cells of pigs.

14.
Animals (Basel) ; 14(17)2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39272372

RESUMEN

Streptococcus agalactiae ATCC 27956 is a highly contagious Gram-positive bacterium that causes mastitis, has a high infectivity for mammary epithelial cells, and becomes challenging to treat. However, the molecular interactions between it and mammary epithelial cells remain poorly understood. This study analyzed differential gene expression in mammary epithelial cells with varying levels of S. agalactiae infection using UID-Dual transcriptome sequencing and bioinformatics tools. This study identified 211 differentially expressed mRNAs (DEmRNAs) and 452 differentially expressed lncRNAs (DElncRNAs) in host cells, primarily enriched in anti-inflammatory responses, immune responses, and cancer-related processes. Additionally, 854 pathogen differentially expressed mRNAs (pDEmRNAs) were identified, mainly enriched in protein metabolism, gene expression, and biosynthesis processes. Mammary epithelial cells activate pathways, such as the ERK1/2 pathway, to produce reactive oxygen species (ROS) to eliminate bacteria. The bacteria disrupt the host's innate immune mechanisms by interfering with the alternative splicing processes of mammary epithelial cells. Specifically, the bacterial genes of tsf, prfB, and infC can interfere with lncRNAs targeting RUNX1 and BCL2L11 in mammary epithelial cells, affecting the alternative splicing of target genes and altering normal molecular regulation.

15.
Animals (Basel) ; 14(17)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39272375

RESUMEN

Cow milk possesses high nutritional value due to its rich array of beneficial fatty acids. It is important to understand the mechanisms involved in lipid metabolism in dairy cows. These mechanisms are driven by a complex molecular regulatory network. In addition, there are many regulatory factors involved in the process of fatty acid metabolism, including transcription factors and non-coding RNAs, amongst others. MicroRNAs (miRNAs) can regulate the expression of target genes and modulate various biological processes, including lipid metabolism. Specifically, miR-206 has been reported to impair lipid accumulation in nonruminant hepatocytes. However, the effects and regulatory mechanisms of miR-206 on lipid metabolism in bovine mammary cells remain unclear. In the present study, we investigated the effects of miR-206 on lipid-related genes and TAG accumulation. The direct downstream gene of miR-206 was subsequently determined via a dual-luciferase assay. Finally, the fatty acid content of bovine mammary epithelial cells (BMECs) upon ELOVL6 inhibition was examined. The results revealed that miR-206 overexpression significantly decreased triacylglycerol (TAG) concentration and abundances of the following: acetyl-coenzyme A carboxylase alpha (ACACA); fatty acid synthase (FASN); sterol regulatory element binding transcription factor 1 (SREBF1); diacylglycerol acyltransferase 1 (DGAT1); 1-acylglycerol-3-phosphate O-acyltransferase 6 (AGPAT6); lipin 1 (LPIN1); and fatty acid elongase 6 (ELOVL6). Overexpression of miR-206 was also associated with an increase in patatin-like phospholipase domain-containing 2 (PNPLA2), while inhibition of miR-206 promoted milk fat metabolism in vitro. In addition, we found that ELOVL6 is a direct target gene of miR-206 through mutation of the binding site. Furthermore, ELOVL6 intervention significantly decreased the TAG levels and elongation indexes of C16:0 and C16:1n-7 in BMECs. Finally, ELOVL6 siRNA partially alleviated the increased TAG accumulation caused by miR-206 inhibition. In summary, we found that miR-206 inhibits milk fatty acid synthesis and lipid accumulation by targeting ELOVL6 in BMECs. The results presented in this paper may contribute to the development of strategies for enhancing the quality of cow milk and its beneficial fatty acids, from the perspective of miRNA-mRNA networks.

16.
Cells ; 13(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39272983

RESUMEN

Cold atmospheric plasma (CAP) devices generate reactive oxygen and nitrogen species, have antimicrobial and antiviral properties, but also affect the molecular and cellular mechanisms of eukaryotic cells. The aim of this study is to investigate CAP treatment in the upper respiratory tract (URT) to reduce the incidence of ventilator-associated bacterial pneumonia (especially superinfections with multi-resistant pathogens) or viral infections (e.g., COVID-19). For this purpose, the surface-microdischarge-based plasma intensive care (PIC) device was developed by terraplasma medical GmbH. This study analyzes the safety aspects using in vitro assays and molecular characterization of human oral keratinocytes (hOK), human bronchial-tracheal epithelial cells (hBTE), and human lung fibroblasts (hLF). A 5 min CAP treatment with the PIC device at the "throat" and "subglottis" positions in the URT model did not show any significant differences from the untreated control (ctrl.) and the corresponding pressurized air (PA) treatment in terms of cell morphology, viability, apoptosis, DNA damage, and migration. However, pro-inflammatory cytokines (MCP-1, IL-6, and TNFα) were induced in hBTE and hOK cells and profibrotic molecules (collagen-I, FKBP10, and αSMA) in hLF at the mRNA level. The use of CAP in the oropharynx may make an important contribution to the recovery of intensive care patients. The results indicate that a 5 min CAP treatment in the URT with the PIC device does not cause any cell damage. The extent to which immune cell activation is induced and whether it has long-term effects on the organism need to be carefully examined in follow-up studies in vivo.


Asunto(s)
Gases em Plasma , Humanos , Gases em Plasma/farmacología , COVID-19 , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Citocinas/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Apoptosis/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Sistema Respiratorio/efectos de los fármacos , Sistema Respiratorio/patología , Pulmón/patología , Pulmón/efectos de los fármacos , Daño del ADN
17.
Cells ; 13(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39273030

RESUMEN

The prolactin (PRL) hormone is a major regulator of mammary gland development and lactation. However, it remains unclear whether and how PRL contributes to mammary epithelial cell proliferation and secretion. The Boer and Macheng black crossbred goats are superior in reproduction, meat, and milk, and are popular in Hubei province. To elucidate the mechanisms of PRL on mammary growth and lactation, to improve the local goat economic trade, we have performed studies on these crossbred goats during pregnancy and early lactation, and in goat mammary epithelial cells (GMECs). Here, we first found that the amino acid transporters of SNAT1 and SNAT2 expression in vivo and in vitro were closely associated with PRL levels, the proliferation and secretion of GMECs; knockdown and over-expression of SNAT1/2 demonstrated that PRL modulated the proliferation and lactation of GMECs through regulating SNAT1/2 expression. Transcriptome sequencing and qPCR assays demonstrated the effect of PRL on the transcriptional regulation of SNAT1 and SNAT2 in GMECs. Dual-luciferase reporter gene assays further verified that the binding of the potential PRL response element in the SNAT1/2 promoter regions activated SNAT1/2 transcription after PRL stimulation. Additionally, silencing of either PRLR or STAT5 nearly abolished PRL-stimulated SNAT1/2 promoter activity, suggesting PRLR-STAT5 signaling is involved in the regulation of PRL on the transcriptional activation of SNAT1/2. These results illustrated that PRL modulates the proliferation and secretion of GMECs via PRLR-STAT5-mediated regulation of the SNAT1/2 pathway. This study provides new insights into how PRL affects ruminant mammary development and lactation through regulation of amino acid transporters.


Asunto(s)
Proliferación Celular , Células Epiteliales , Cabras , Lactancia , Glándulas Mamarias Animales , Prolactina , Animales , Prolactina/metabolismo , Femenino , Células Epiteliales/metabolismo , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/crecimiento & desarrollo , Factor de Transcripción STAT5/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Embarazo , Regiones Promotoras Genéticas/genética
18.
Cells ; 13(17)2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39273036

RESUMEN

More than a decade after the discovery of the classical cytoplasmic IκB proteins, IκBζ was identified as an additional member of the IκB family. Unlike cytoplasmic IκB proteins, IκBζ has distinct features, including its nuclear localization, preferential binding to NF-κB subunits, unique expression properties, and specialized role in NF-κB regulation. While the activation of NF-κB is primarily controlled by cytoplasmic IκB members at the level of nuclear entry, IκBζ provides an additional layer of NF-κB regulation in the nucleus, enabling selective gene activation. Human genome-wide association studies (GWAS) and gene knockout experiments in mice have elucidated the physiological and pathological roles of IκBζ. Despite the initial focus to its role in activated macrophages, IκBζ has since been recognized as a key player in the IL-17-triggered production of immune molecules in epithelial cells, which has garnered significant clinical interest. Recent research has also unveiled a novel molecular function of IκBζ, linking NF-κB and the POU transcription factors through its N-terminal region, whose role had remained elusive for many years.


Asunto(s)
Núcleo Celular , FN-kappa B , Humanos , FN-kappa B/metabolismo , Animales , Núcleo Celular/metabolismo , Proteínas I-kappa B/metabolismo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales
19.
BMC Nephrol ; 25(1): 297, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251943

RESUMEN

BACKGROUND: Diabetic nephropathy (DN) is a common complication of diabetes mellitus, and Prolyl 4-Hydroxylase Subunit Beta (P4HB) expression is increased in high glucose (HG)-induced renal tubular epithelial cells (TECs). But it's role in HG-induced TECs remains to be elucidated. METHODS: The HK-2 cells were induced using HG and transfected with SiRNA-P4HB. DCFH-DA staining was utilized for the detection of cellular levels of ROS. WB and immunofluorescence were utilized to detect the expression of P4HB, epithelial-mesenchymal transition (EMT), fibrosis, and TGFß/SMAD3-related proteins in HK-2 cells. Online databases were utilized for predicting the interaction target of P4HB, and immunoprecipitation (IP) experiments were employed to validate the binding of P4HB with the target. SiRNA and overexpression vectors of target gene were used to verify the mechanism of action of P4HB. RESULTS: HG induced an increase in the expression of P4HB and TGFß, p-SMAD3, and ROS in HK-2 cells. Furthermore, HG downregulated the expression of E-cadherin and upregulated the expression of N-cadherin, Vimentin, α-SMA, Fibronectin, Collagen IV, SNAIL, and SLUG in HK-2 cells. Interfering with P4HB significantly reversed the expression of these proteins. Database predictions and IP experiments showed that P4HB interacts with PRMT1, and the expression of PRMT1 was increased in HG-induced HK-2 cells. Interfering with PRMT1 inhibited the changes in expression of EMT and fibrosis related proteins induced by HG. However, overexpression of PRMT1 weakened the regulatory effect of P4HB interference on the EMT, fibrosis, and TGFß/SMAD3-related proteins in HK-2 cells. CONCLUSION: P4HB regulated the TGFß/SMAD3 signaling pathway through PRMT1 and thus participates in HG-induced EMT and fibrosis in HK-2 cells.


Asunto(s)
Células Epiteliales , Transición Epitelial-Mesenquimal , Fibrosis , Glucosa , Túbulos Renales , Proteína-Arginina N-Metiltransferasas , Proteínas Represoras , Transducción de Señal , Proteína smad3 , Factor de Crecimiento Transformador beta , Humanos , Proteína smad3/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Glucosa/farmacología , Glucosa/toxicidad , Glucosa/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Factor de Crecimiento Transformador beta/metabolismo , Túbulos Renales/patología , Túbulos Renales/metabolismo , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Línea Celular , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Especies Reactivas de Oxígeno/metabolismo
20.
World Allergy Organ J ; 17(9): 100955, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39252790

RESUMEN

Background: Inhaled corticosteroids (ICS) are primary anti-inflammatory medications to control eosinophilic airway inflammation, and prevent asthma exacerbation. However, persistent airflow limitation (PAL) presents in some asthmatics even on ICS treatment, leading to lung function decline. Thus, we evaluated clinical associations of serum galectin-10 (Gal10) and galectin-3 (Gal3) levels in adult asthmatics who had maintained anti-asthma medication. Methods: Sixty-seven asthmatics and 78 healthy controls (HCs) were recruited. Serum Gal10 and Gal3 levels were measured by enzyme-linked immunosorbent assay, and their clinical relevance with inflammatory and lung function parameters was evaluated. Spirometry was performed to assess PAL and small airway dysfunction (SAD). Airway epithelial cells were cocultured with eosinophils/neutrophils, and were exposed to house dust mites to assess the production of Gal10 and Gal3. Results: Serum Gal10 (not Gal3) levels were significantly higher in asthmatics than in HCs (P < 0.001), in asthmatics with PAL than in those without PAL (P = 0.005), and in those with SAD than in those without SAD (P = 0.004). The Gal10-high group had significantly higher levels of peripheral CD66+ neutrophil counts, serum periostin and Gal3, and lower values of FEV1% and MMEF% than the Gal10-low group (P < 0.050 for all). The production of Gal10 and Gal3 was increased in eosinophilic airway model, while Gal10 (not Gal3) levels were increased in neutrophilic airway model as well as house dust mite stimulation. Conclusion: Our findings suggest that serum Gal10 level may be a potential biomarker for PAL in adult asthmatics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA