Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38673263

RESUMEN

The corrosion behavior of a hybrid laminate consisting of laser-structured aluminum EN AW-6082 ∪ carbon fiber-reinforced polymer was investigated. Specimens were corroded in aqueous NaCl electrolyte (0.1 mol/L) over a period of up to 31 days and characterized continuously by means of scanning electron and light microscopy, supplemented by energy dispersive X-ray spectroscopy. Comparative linear sweep voltammetry was employed on the first and seventh day of the corrosion experiment. The influence of different laser morphologies and production process parameters on corrosion behavior was compared. The corrosion reaction mainly arises from the aluminum component and shows distinct differences in long-term corrosion morphology between pure EN AW-6082 and the hybrid laminate. Compared to short-term investigations, a strong influence of galvanic corrosion on the interface is assumed. No distinct influences of different laser structuring and process parameters on the corrosion behavior were detected. Weight measurements suggest a continuous loss of mass attributed to the detachment of corrosion products.

2.
Materials (Basel) ; 16(2)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36676423

RESUMEN

Laser structuring is by far the most investigated metal surface-pretreatment method for creating adhesion in polymer-metal hybrids. Especially, cone-like protrusions show excellent wetting behaviour as well as high compound strength. However, the processing time is extremely high. Therefore, this paper assesses a process strategy for creating pin structures with scalable height by single pulse drilling with an Nd/YVO4 nanosecond laser system on EN AW-6082 aluminium alloy. The strength testing is carried out by butt-bonded hollow cylinder torsion. The samples are manufactured by heat-conduction thermal joining with polyamide 6. Ten different surface structures with two different ablation diameters are investigated and compared to cone-like protrusions in terms of processing time, wetting behaviour, shear strength and fracture behaviour. The experimental results show that pulse drilling pins structures with high aspect ratio reach-strength values close to cone-like protrusions but with 31 times higher processing rate.

3.
Sci Technol Adv Mater ; 21(1): 205-218, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32341720

RESUMEN

The aim of this work is to investigate quench induced precipitation during continuous cooling in aluminium wrought alloys EN AW-7150 and EN AW-6082 using in situ synchrotron wide-angle X-ray scattering (WAXS). While X-ray diffraction is usually an ex situ method, a variety of diffraction patterns were recorded during the cooling process, allowing in situ analysis of the precipitation process. The high beam energy of about 100 keV allows the beam to penetrate a bulk sample with a 4 mm diameter in a quenching dilatometer. Additionally, the high intensity of a synchrotron source enables sufficiently high time resolution for fast in situ cooling experiments. Reaction peaks could be detected and compared with results from differential scanning calorimetry (DSC) by this method. A methodology is presented in this paper to evaluate WAXS data in a way that is directly comparable to DSC-experiments. The results show a high correlation between both techniques, DSC and WAXS, and can significantly improve continuous cooling precipitation diagrams.

4.
Materials (Basel) ; 12(7)2019 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-30986940

RESUMEN

In this work, a method is presented which allows the determination of calorimetric information, and thus, information about the precipitation and dissolution behavior of aluminum alloys during heating rates that could not be previously measured. Differential scanning calorimetry (DSC) is an established method for in-situ recording of dissolution and precipitation reactions in various aluminum alloys. Diverse types of DSC devices are suitable for different ranges of scanning rates. A combination of the various available commercial devices enables heating and cooling rates from 10-4 to 5 Ks-1 to be covered. However, in some manufacturing steps of aluminum alloys, heating rates up to several 100 Ks-1 are important. Currently, conventional DSC cannot achieve these high heating rates and they are still too slow for the chip-sensor based fast scanning calorimetry. In order to fill the gap, an indirect measurement method has been developed, which allows the determination of qualitative information, regarding the precipitation state, at various points of any heat treatment. Different rapid heat treatments were carried out on samples of an alloy EN AW-6082 in a quenching dilatometer and terminated at defined temperatures. Subsequent reheating of the samples in the DSC enables analysis of the precipitation state of the heat-treated samples. This method allows for previously un-measurable heat treatments to get information about the occurring precipitation and dissolution reactions during short-term heat treatments.

5.
Materials (Basel) ; 11(8)2018 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-30096950

RESUMEN

Wide softening zones are typical for welded joints of age hardened aluminium alloys. In this study, the microstructure evolution and distribution of mechanical properties resulting from welding processes of the aluminium alloy EN AW-6082 (AlSi1MgMn) was analysed by both in-situ and ex-situ investigations. The in-situ thermal analyses (TMA) included differential scanning calorimetry (DSC), which was used to characterise the dissolution and precipitation behaviour in the heat affected zone (HAZ) of welded joints. Thermo-mechanical analysis by means of compression tests was used to determine the mechanical properties of various states of the microstructure after the welding heat input. The necessary temperature⁻time courses in the HAZ for these methods were measured using thermocouples during welding. Additionally, ex-situ tensile tests were done both on specimens from the fusion zone and on welded joints, and their in-depth analysis with digital image correlation (DIC) accompanied by finite element simulations serve for the description of flow curves in different areas of the weld. The combination of these methods and the discussion of their results make an essential contribution to understand the influence of welding heat on the material properties, particularly on the softening behaviour. Furthermore, the distributed strength characteristic of the welded connections is required for an applicable estimation of the load-bearing capacity of welded aluminium structures by numerical methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA