Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Oncol ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38978350

RESUMEN

Paired related homeobox 1 (PRRX1) is an inducer of epithelial-to-mesenchymal transition (EMT) in different types of cancer cells. We detected low PRRX1 expression in nevus but increased levels in primary human melanoma and cell lines carrying the BRAFV600E mutation. High expression of PRRX1 correlates with invasiveness and enrichment of genes belonging to the EMT programme. Conversely, we found that loss of PRRX1 in metastatic samples is an independent prognostic predictor of poor survival for melanoma patients. Here, we show that stable depletion of PRRX1 improves the growth of melanoma xenografts and increases the number of distant spontaneous metastases, compared to controls. We provide evidence that loss of PRRX1 counteracts the EMT phenotype, impairing the expression of other EMT-related transcription factors, causing dysregulation of the ERK and signal transducer and activator of transcription 3 (STAT3) signaling pathways, and abrogating the invasive and migratory properties of melanoma cells while triggering the up-regulation of proliferative/melanocytic genes and the expression of the neural-crest-like markers nerve growth factor receptor (NGFR; also known as neurotrophin receptor p75NTR) and neural cell adhesion molecule L1 (L1CAM). Overall, our results indicate that loss of PRRX1 triggers a switch in the invasive programme, and cells de-differentiate towards a neural crest stem cell (NCSC)-like phenotype that accounts for the metastatic aggressiveness.

2.
Stem Cells Dev ; 32(23-24): 731-746, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37823730

RESUMEN

Rat primitive extraembryonic endoderm (pXEN) stem cell lines indefinitely preserve the characteristic features of the early extraembryonic endoderm (ExEn) in vitro, but require unknown serum factors and exhibit a hybrid (mesenchymal-epithelial) phenotype. We report two chemically defined conditions that differ by the addition of the cytokine leukemia inhibitory factor (Lif) and the ß-catenin-stabilizing drug Chir99021, and enable permanent self-renewal as mesenchymal and epithelial morphotypes, respectively. The morphotypes are interconvertible and equipotent, as shown by the formation of well-differentiated organoids. Surprisingly, the proliferation of both morphotypes requires Lif-type Gp130/Stat3 signaling (autocrine in the absence of added Lif) and noncanonical Wnt signaling (autocrine). In addition, the epithelial version requires ß-catenin for proliferation and morphology. Interestingly, the mesenchymal cells also express key epithelial markers, but those are improperly structured and/or not functional, indicating a primed state. These results provide an improved platform for studying the proliferation and plasticity of the early ExEn, which occurs in mesenchymal and epithelial forms in vivo.


Asunto(s)
Endodermo , beta Catenina , Ratas , Animales , Diferenciación Celular , beta Catenina/metabolismo , Línea Celular , Células Madre Embrionarias
3.
Biology (Basel) ; 12(6)2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37372146

RESUMEN

A dynamic interplay between prostate cancer (PCa) cells and reactive bone stroma modulates the growth of metastases within the bone microenvironment. Of the stromal cells, metastasis-associated fibroblasts (MAFs) are known to contribute but are the least studied cell type in PCa tumour progression. It is the aim of the current study to establish a biologically relevant 3D in vitro model that mimics the cellular and molecular profiles of MAFs found in vivo. Using 3D in vitro cell culture models, the bone-derived fibroblast cell line, HS-5, was treated with conditioned media from metastatic-derived PCa cell lines, PC3 and MDA-PCa 2b, or mouse-derived fibroblasts 3T3. Two corresponding reactive cell lines were propagated: HS5-PC3 and HS5-MDA, and evaluated for alterations in morphology, phenotype, cellular behaviour, plus protein and genomic profiles. HS5-PC3 and HS5-MDA displayed distinct alterations in expression levels of N-Cadherin, non-functional E-Cadherin, alpha-smooth muscle actin (α-SMA), Tenascin C, and vimentin, along with transforming growth factor receptor expression (TGF ß R1 and R2), consistent with subpopulations of MAFs reported in vivo. Transcriptomic analysis revealed a reversion of HS5-PC3 towards a metastatic phenotype with an upregulation in pathways known to regulate cancer invasion, proliferation, and angiogenesis. The exploitation of these engineered 3D models could help further unravel the novel biology regulating metastatic growth and the role fibroblasts play in the colonisation process.

4.
J Cell Commun Signal ; 17(3): 1039-1054, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37133713

RESUMEN

GSK3ß interacting protein (GSKIP) is a small A-kinase anchor protein previously reported to mediate the N-cadherin/ß-catenin pool for differentiation in SH-SY5Y cells through overexpression of GSKIP to present the neuron outgrowth phenotype. To further investigate how GSKIP functions in neurons, CRISPR/Cas9 technology was utilized to knock out GSKIP (GSKIP-KO) in SH-SY5Y. Several GSKIP-KO clones resulted in an aggregation phenotype and reduced cell growth without retinoic acid (RA) treatment. However, neuron outgrowth was still observed in GSKIP-KO clones treated with RA. The GSKIP-KO clones exhibited an aggregation phenotype through suppression of GSK3ß/ß-catenin pathways and cell cycle progression rather than cell differentiation. Gene set enrichment analysis indicated that GSKIP-KO was related to epithelial mesenchymal transition/mesenchymal epithelial transition (EMT/MET) and Wnt/ß-catenin/cadherin signaling pathways, suppressing cell migration and tumorigenesis through the inhibition of Wnt/ß-catenin mediated EMT/MET. Conversely, reintroduction of GSKIP into GSKIP-KO clones restored cell migration and tumorigenesis. Notably, phosphor-ß-catenin (S675) and ß-catenin (S552) but not phosphor-ß-catenin (S33/S37/T41) translocated into the nucleus for further gene activation. Collectively, these results suggested that GSKIP may function as an oncogene to form an aggregation phenotype for cell survival in harsh environments through EMT/MET rather than differentiation in the GSKIP-KO of SH-SY5Y cells. GSKIP Implication in Signaling Pathways with Potential Impact on SHSY-5Y Cell Aggregation.

5.
Cancers (Basel) ; 14(19)2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36230849

RESUMEN

Retinoblastoma (RB) is the most common intraocular pediatric cancer. Nearly all cases of RB are associated with mutations compromising the function of the RB1 tumor suppressor gene. We previously demonstrated that PRELP is widely downregulated in various cancers and our in vivo and in vitro analysis revealed PRELP as a novel tumor suppressor and regulator of EMT. In addition, PRELP is located at chromosome 1q31.1, around a region hypothesized to be associated with the initiation of malignancy in RB. Therefore, in this study, we investigated the role of PRELP in RB through in vitro analysis and next-generation sequencing. Immunostaining revealed that PRELP is expressed in Müller glial cells in the retina. mRNA expression profiling of PRELP-/- mouse retina and PRELP-treated RB cells found that PRELP contributes to RB progression via regulation of the cancer microenvironment, in which loss of PRELP reduces cell-cell adhesion and facilitates EMT. Our observations suggest that PRELP may have potential as a new strategy for RB treatment.

6.
Semin Cancer Biol ; 81: 73-82, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-33440246

RESUMEN

We have presented an in vitro trackable model system, atavistic induced from conservation in our genome, which strongly is applicable to tumorigenesis start and evolution. The inducing factor was death signals to proliferating normal human cells (primary cell strains), which respon-ded by a special type of tetraploidization, chromosomes with 4-chromatids (diplochromosomes, earlier described in cancer cells). The response included cell cycle stress, which prolonged S-period with result of mitotic slippage process, forming the special 4n cells by re-replication of diploid cells, which showed cell division capability to unexpected, genome reduced diploid cells which remarkably, showed fitness gain. This unique response through cell cycle stress and mitotic slippage process was further discovered to be linked to a rather special characteristic of the, 4n nucleus. The nucleus turned, self-inflicted, 90° perpendicular to the cell's cytoskeleton axis, importantly, before the special 4n-division system produced genome reduce diploid cells, we call "first cells", because of fitness gain. These 2n cells also showed the nuclear dependent 90° turn, which in both cases was associated with cells gaining cell shape changes, herein illustrated from normal fibroblastic cells changing to roundness cells, indistinguishable from todays' diagnostic cancer cell morphology. This 3-D ball-like cell shape, in metastasis, sque-ezing in and out between (?) endothelial cells in the lining of blood veins during disbursement, would be advantageous.


Asunto(s)
Células Endoteliales , Neoplasias , Ciclo Celular/genética , Forma de la Célula , Diploidia , Humanos , Mitosis , Neoplasias/genética
7.
Cell Biosci ; 11(1): 94, 2021 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-34022967

RESUMEN

Most osteosarcomas (OSs) develop from mesenchymal cells at the bone with abnormal growth in young patients. OS has an annual incidence of 3.4 per million people and a 60-70% 5-year surviving rate. About 20% of OS patients have metastasis at diagnosis, and only 27% of patients with metastatic OS survive longer than 5 years. Mutation of tumor suppressors RB1, TP53, REQL4 and INK4a and/or deregulation of PI3K/mTOR, TGFß, RANKL/NF-κB and IGF pathways have been linked to OS development. However, the agents targeting these pathways have yielded disappointing clinical outcomes. Surgery and chemotherapy remain the main treatments of OS. Recurrent and metastatic OSs are commonly resistant to these therapies. Spontaneous canine models, carcinogen-induced rodent models, transgenic mouse models, human patient-derived xenograft models, and cell lines from animal and human OSs have been developed for studying the initiation, growth and progression of OS and testing candidate drugs of OS. The cell plasticity regulated by epithelial-to-mesenchymal transition transcription factors (EMT-TFs) such as TWIST1, SNAIL, SLUG, ZEB1 and ZEB2 plays an important role in maintenance of the mesenchymal status and promotion of cell invasion and metastasis of OS cells. Multiple microRNAs including miR-30/9/23b/29c/194/200, proteins including SYT-SSX1/2 fusion proteins and OVOL2, and other factors that inhibit AMF/PGI and LRP5 can suppress either the expression or activity of EMT-TFs to increase epithelial features and inhibit OS metastasis. Further understanding of the molecular mechanisms that regulate OS cell plasticity should provide potential targets and therapeutic strategies for improving OS treatment.

8.
Int J Med Sci ; 18(8): 1798-1809, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33746597

RESUMEN

Cell migration and invasion are modulated by epithelial-to-mesenchymal transition (EMT) and the reverse MET process. Despite the detection of microRNA-362 (miR-362, both the miR-362-5p and -3p species) in cancers, none of the identified miR-362 targets is a mesenchymal or epithelial factor to link miR-362 with EMT/MET and metastasis. Focusing on the TGF-ß/SMAD signaling pathway in this work, luciferase assays and western blot data showed that miR-362 targeted and negatively regulated expression of SMAD4 and E-cadherin, but not SNAI1, which is regulated by SMAD4. However, miR-362 knockdown also down-regulated SMAD4 and SNAI1, but up-regulated E-cadherin expression. Wound-healing and transwell assays further showed that miR-362 knockdown suppressed cell migration and invasion, effects which were reversed by over-expressing SMAD4 or SNAI1, or by knocking down E-cadherin in the miR-362 knockdown cells. In orthotopic mice, miR-362 knockdown inhibited metastasis, and displayed the same SMAD4 and E-cadherin expression profiles in the tumors as in the in vitro studies. A scheme is proposed to integrate miR-362 negative regulation via SMAD4, and to explain miR-362 positive regulation of SMAD4 via miR-362 targeting of known SMAD4 suppressors, BRK and DACH1, which would have resulted in SMAD4 depletion and annulment of subsequent involvement in TGF-ß signaling actions. Hence, miR-362 both negatively and positively regulates SMAD4 expression in TGF-ß/SMAD signaling pathway to suppress cell motility and invasiveness and metastasis, and may explain the reported clinical association of anti-miR-362 with suppressed metastasis in various cancers. MiR-362 knockdown in miR-362-positive cancer cells may be used as a therapeutic strategy to suppress metastasis.


Asunto(s)
MicroARNs/metabolismo , Neoplasias/genética , Proteína Smad4/genética , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Ratones , Invasividad Neoplásica/genética , Neoplasias/patología , Transducción de Señal/genética , Proteína Smad4/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Biomolecules ; 11(1)2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33418847

RESUMEN

Every living cell is covered with a dense and complex layer of glycans on the cell surface, which have important functions in the interaction between cells and their environment. Glycosphingolipids (GSLs) are glycans linked to lipid molecules that together with sphingolipids, sterols, and proteins form plasma membrane lipid rafts that contribute to membrane integrity and provide specific recognition sites. GSLs are subdivided into three major series (globo-, ganglio-, and neolacto-series) and are synthesized in a non-template driven process by enzymes localized in the ER and Golgi apparatus. Altered glycosylation of lipids are known to be involved in tumor development and metastasis. Metastasis is frequently linked with reversible epithelial-to-mesenchymal transition (EMT), a process involved in tumor progression, and the formation of new distant metastatic sites (mesenchymal-to-epithelial transition or MET). On a single cell basis, cancer cells lose their epithelial features to gain mesenchymal characteristics via mechanisms influenced by the composition of the GSLs on the cell surface. Here, we summarize the literature on GSLs in the context of reversible and cancer-associated EMT and discuss how the modification of GSLs at the cell surface may promote this process.


Asunto(s)
Transición Epitelial-Mesenquimal , Glicoesfingolípidos/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Animales , Glicoesfingolípidos/biosíntesis , Glicoesfingolípidos/química , Humanos , Modelos Biológicos , Transducción de Señal
10.
Methods Mol Biol ; 2179: 29-33, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32939711

RESUMEN

As our understanding of Epithelial Mesenchymal Transition (EMT) increases, the original binary concept of E versus M no longer fits with experimental evidence. Re-definition of the EMT paradigm as spectral transitions between a full epithelium and a full mesenchyme suggests the existence of a virtual infinity of intermediate cellular states. The new challenge is to develop technical tools needed to contextualize each of these states and identify biologically significant cellular mechanisms that could be targeted in combatting EMT-related diseases.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Transición Epitelial-Mesenquimal/genética , Epitelio/crecimiento & desarrollo , Epitelio/metabolismo , Humanos , Mesodermo/crecimiento & desarrollo , Mesodermo/metabolismo
11.
Cell Reprogram ; 21(5): 229-237, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31479283

RESUMEN

Pig-induced pluripotent stem cells (piPSCs) have great potential application in regenerative medicine. The miR-302s cluster alone has been shown to reprogram mouse and human somatic cells into induced pluripotent stem cells (iPSCs) without exogenous transcription factors. However, miR-302s alone have not been reported to reprogram cells in large livestock. In this study, we induced pig somatic cells into partially reprogrammed piPSCs using overexpression of the miR-302s cluster (miR-302s-piPSC) and investigated the early reprogramming events during the miRNA induction process. The results showed that miR-302s-piPSCs exhibited some characteristics of pluripotent stem cells including expression of pluripotency markers-particularly, efficient activation of endogenous OCT4-and differentiation to the three germ layers in vitro. During the early reprogramming process, somatic cells first underwent epithelial-mesenchymal transition and then mesenchymal-epithelial transition to eventually form miR-302s-piPSCs. These data show, for the first time, that single factor miR-302s successfully induced pig somatic cells into miR-302s-piPSCs. This study provides a new tool and research direction for the induction of pluripotent stem cells in a large livestock.


Asunto(s)
Diferenciación Celular , Reprogramación Celular , Transición Epitelial-Mesenquimal , Feto/citología , Fibroblastos/citología , Células Madre Pluripotentes Inducidas/citología , MicroARNs/genética , Animales , Células Cultivadas , Feto/metabolismo , Fibroblastos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Porcinos , Porcinos Enanos , Factores de Transcripción/metabolismo
12.
Breast Cancer Res ; 21(1): 6, 2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30651129

RESUMEN

BACKGROUND: Epithelial-mesenchymal transition (EMT) occurs in the tumor microenvironment and presents an important mechanism of tumor cell intravasation, stemness acquisition, and metastasis. During metastasis, tumor cells enter the circulation to gain access to distant tissues, but how this fluid microenvironment influences cancer cell biology is poorly understood. METHODS AND RESULTS: Here, we present both in vivo and in vitro evidence that EMT-like transition also occurs in circulating tumor cells (CTCs) as a result of hydrodynamic shear stress (+SS), which promotes conversion of CD24middle/CD44high/CD133middle/CXCR4low/ALDH1low primary patient epithelial tumor cells into specific high sphere-forming CD24low/CD44low/CD133high/CXCR4high/ALDH1high cancer stem-like cells (CSLCs) or tumor-initiating cells (TICs) with elevated tumor progression and metastasis capacity in vitro and in vivo. We demonstrate that conversion of CSLCs/TICs from epithelial tumor cells via +SS is dependent on reactive oxygen species (ROS)/nitric oxide (NO) generation, and suppression of extracellular signal-related kinase (ERK)/glycogen synthase kinase (GSK)3ß, a mechanism similar to that operating in embryonic stem cells to prevent their differentiation while promoting self-renewal. CONCLUSION: Fluid shear stress experienced during systemic circulation of human breast tumor cells can lead to specific acquisition of mesenchymal stem cell (MSC)-like potential that promotes EMT, mesenchymal-epithelial transition, and metastasis to distant organs. Our data revealed that biomechanical forces appeared to be important microenvironmental factors that not only drive hematopoietic development but also lead to acquisition of CSLCs/TIC potential in cancer metastasis. Our data highlight that +SS is a critical factor that promotes the conversion of CTCs into distinct TICs in blood circulation by endowing plasticity to these cells and by maintaining their self-renewal signaling pathways.


Asunto(s)
Neoplasias de la Mama/patología , Autorrenovación de las Células/fisiología , Transición Epitelial-Mesenquimal/fisiología , Células Madre Neoplásicas/patología , Microambiente Tumoral/fisiología , Adulto , Anciano , Animales , Mama/citología , Mama/patología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Células HEK293 , Humanos , Hidrodinámica , Ratones , Persona de Mediana Edad , Invasividad Neoplásica/patología , Cultivo Primario de Células , Transducción de Señal/fisiología , Estrés Mecánico , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Anticancer Res ; 38(9): 5013-5026, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30194145

RESUMEN

BACKGROUND/AIM: In breast cancer, Pax-5 promotes pro-epithelial features and suppresses malignant cancer processes. However, the molecular mechanism of this antitumor activity remains largely unknown. This study aimed to identify the cellular roles of Pax-5-regulated miRNAs in breast cancer progression. MATERIALS AND METHODS: After transient transfection of Pax-5 in MDA-MB-231 breast cancer cells, Pax-5-regulated miRNA expression was examined by next-generation sequencing. The identified Pax-5-regulated miRNAs were then validated by qRT-PCR and examined for the roles they play in breast cancer cells. RESULTS: Pax-5 was shown to be an effective modulator of miR-215-5p and its target genes. MiR-215 inhibited cell proliferation and migration of breast cancer cells, but not cell invasion. More importantly, Pax-5-induced suppression of cancer cell proliferation and migration was found to be miR-215-dependent. Interestingly, miR-215 profiling in clinical tumor samples showed that miR-215 expression was lower in cancer tissues in comparison to healthy controls. CONCLUSION: Pax-5 reduces breast cancer proliferation and migration through up-regulation of the tumor suppressor miR-215. This result supports the use of miR-215 as a prognostic marker for breast cancer.


Asunto(s)
Neoplasias de la Mama/genética , MicroARNs/genética , Factor de Transcripción PAX5/genética , Regulación hacia Arriba , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Análisis de Secuencia de ARN
14.
J Mammary Gland Biol Neoplasia ; 23(3): 177-187, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30032344

RESUMEN

Pax-5, an essential transcription factor in B cell development, is aberrantly expressed in various B cell cancer lesions and solid tumors such as breast carcinoma. We have recently shown that Pax-5 regulates NF-κB activity which lead to the modulation of breast cancer phenotypic features (EMT-MET). NF-κB is known as a central mediator in inflammation, stress response as well as being a gatekeeper of pro-tumorigenic activity. However, little is known as to how Pax-5 affects this modulation. We thus turned our attention to microRNAs as potential regulatory effectors. In this study, we set out to elucidate the regulatory network between differential Pax-5 expression and NF-κB activity which dictate breast cancer malignancy. Through next-generation sequencing (NGS) of breast cancer cells conditionally expressing Pax-5, we profile significantly upregulated microRNAs; including microRNA-155, a known regulator of pathological processes and suppressor of malignant growth. Through the conditional expression of microRNA-155 in breast cancer models, we identify and validate IKKε (IKBKE) as a downstream target and an essential effector of Pax-5-mediated suppression of NF-κB signaling. Using rescue experiments, we also confirm that Pax-5 modulates NF-κB activity via IKKε downregulation. Interestingly, we also show that microRNA-155, in turn, supresses Pax-5 expression, indicative of an auto-regulatory feedback loop. Altogether, we demonstrate that Pax-5 inhibits NF-κB signalling through the regulation of microRNA-155 and its downstream target IKKε. The elucidation of this signaling network is relevant as Pax-5 and NF-κB are potent transcriptional regulators of breast cancer aggressivity. In addition, IKKε is relevant oncogene aberrantly expressed in 30% of breast carcinomas. Further insight into the regulatory pathways of breast cancer progression will eventually identify strategic therapeutic and prognostic targets to improve cancer patient outcome.


Asunto(s)
Neoplasias de la Mama/genética , Quinasa I-kappa B/genética , MicroARNs/genética , FN-kappa B/genética , Factor de Transcripción PAX5/genética , Mama/patología , Neoplasias de la Mama/patología , Carcinogénesis/genética , Carcinogénesis/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación hacia Abajo/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Células MCF-7 , Transducción de Señal/genética
15.
Cancers (Basel) ; 9(8)2017 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-28758926

RESUMEN

The epithelial-to-mesenchymal transition (EMT) is an essential trans-differentiation process, which plays a critical role in embryonic development, wound healing, tissue regeneration, organ fibrosis, and cancer progression. It is the fundamental mechanism by which epithelial cells lose many of their characteristics while acquiring features typical of mesenchymal cells, such as migratory capacity and invasiveness. Depending on the contest, EMT is complemented and balanced by the reverse process, the mesenchymal-to-epithelial transition (MET). In the saving economy of the living organisms, the same (Ying-Yang) tool is integrated as a physiological strategy in embryonic development, as well as in the course of reparative or disease processes, prominently fibrosis, tumor invasion and metastasis. These mechanisms and their related signaling (e.g., TGF-ß and BMPs) have been effectively studied in vitro by tissue-derived cell spheroids models. These three-dimensional (3D) cell culture systems, whose phenotype has been shown to be strongly dependent on TGF-ß-regulated EMT/MET processes, present the advantage of recapitulating in vitro the hypoxic in vivo micro-environment of tissue stem cell niches and their formation. These spheroids, therefore, nicely reproduce the finely regulated Ying-Yang equilibrium, which, together with other mechanisms, can be determinant in cell fate decisions in many pathophysiological scenarios, such as differentiation, fibrosis, regeneration, and oncogenesis. In this review, current progress in the knowledge of signaling pathways affecting EMT/MET and stemness regulation will be outlined by comparing data obtained from cellular spheroids systems, as ex vivo niches of stem cells derived from normal and tumoral tissues. The mechanistic correspondence in vivo and the possible pharmacological perspective will be also explored, focusing especially on the TGF-ß-related networks, as well as others, such as SNAI1, PTEN, and EGR1. This latter, in particular, for its ability to convey multiple types of stimuli into relevant changes of the cell transcriptional program, can be regarded as a heterogeneous "stress-sensor" for EMT-related inducers (growth factor, hypoxia, mechano-stress), and thus as a therapeutic target.

16.
Cell Discov ; 3: 17017, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28580167

RESUMEN

Direct neuronal conversion can be achieved with combinations of small-molecule compounds and growth factors. Here, by studying the first or induction phase of the neuronal conversion induced by defined 5C medium, we show that the Sox2-mediated switch from early epithelial-mesenchymal transition (EMT) to late mesenchymal-epithelial transition (MET) within a high proliferation context is essential and sufficient for the conversion from mouse embryonic fibroblasts (MEFs) to TuJ+ cells. At the early stage, insulin and basic fibroblast growth factor (bFGF)-induced cell proliferation, early EMT, the up-regulation of Stat3 and Sox2, and the subsequent activation of neuron projection. Up-regulated Sox2 then induced MET and directed cells towards a neuronal fate at the late stage. Inhibiting either stage of this sequential EMT-MET impaired the conversion. In addition, Sox2 could replace sequential EMT-MET to induce a similar conversion within a high proliferation context, and its functions were confirmed with other neuronal conversion protocols and MEFs reprogramming. Therefore, the critical roles of the sequential EMT-MET were implicated in direct cell fate conversion in addition to reprogramming, embryonic development and cancer progression.

17.
Biochem Biophys Res Commun ; 484(1): 93-99, 2017 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-28104398

RESUMEN

BORIS/CTCFL is a vital nucleotide binding protein expressed during embryogenesis and gametogenesis. BORIS/CTCFL is the paralogue of transcriptional repressor protein CTCF, which is aberrantly expressed in various malignancies and primarily re-expressed in cancer stem cells (CSCs). The mechanism behind regulation of BORIS in various cancer conditions and tumor metastases is so far not explored in detail. The aim of the study was to understand the influence of BORIS/CTCFL on stemness and metastasis by regulating well-known oncogenes and related signaling pathways. In our study, we have identified a cross-talk between expression of BORIS/CTCFL and Wnt/ß-catenin signaling pathway, which plays a crucial role in various processes including ontogenesis, embryogenesis and maintenance of stem cell properties. Upon knockdown of BORIS/CTCFL, we observed an upregulation of Mesenchymal to Epithelial transition markers such as E-cad and downregulation of Epithelial to Mesenchymal transition markers such as N-CAD, Vimentin, SNAIL, etc. This transition was accomplished by activation of Wnt/ß-catenin signaling pathway by regulating upstream and downstream Wnt associated proteins including ß-catenin, Wnt3a/5a, CD44, MYC etc. We also identified that BMI1, an oncogene belonging to polycomb group expressed positively with levels of BORIS/CTCFL. Our study implicates the role of BORIS/CTCFL in maintenance of stemness and in transition from mesenchymal to epithelial state in MYC amplified neuroblastoma IMR-32 cells. Effectively controlling BORIS/CTCFL levels can inhibit disease establishment and hence can be considered as a potent target for cancer therapy.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo , Proteína Proto-Oncogénica N-Myc/fisiología , Metástasis de la Neoplasia , Células Madre Neoplásicas/patología , Neuroblastoma/patología , Transducción de Señal , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Línea Celular Tumoral , Humanos , Neuroblastoma/genética
18.
Oncotarget ; 8(7): 12052-12066, 2017 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-28076843

RESUMEN

Pax-5, an essential transcription factor for B lymphocyte development, has been linked with the development and progression of lymphoid cancers and carcinoma. In contrast to B-cell cancer lesions, the specific expression signatures and roles of Pax-5 in breast cancer progression are relatively unknown. In the present study, we set out to profile Pax-5 expression in mammary tissues and elucidate the cellular and molecular roles of Pax-5 in breast cancer processes. Using immunohistology on mammary tissue arrays, Pax-5 was detected in a total of 298/306 (97.6%) samples tested. Interestingly, our studies reveal that Pax-5 inhibits aggressive features and confers anti-proliferative effects in breast carcinoma cells in contrast to its oncogenic properties in B cell cancers. More precisely, Pax-5 suppressed breast cancer cell migration, invasion and tumor spheroid formation while concomitantly promoting cell adhesion properties. We also observed that Pax-5 inhibited and reversed breast cancer epithelial to mesenchymal phenotypic transitioning. Mechanistically, we found that the Pax-5 transcription factor binds and induces gene expression of E-cadherin, a pivotal regulator of epithelialisation. Globally, we demonstrate that Pax-5 is predominant expressed factor in mammary epithelial cells. We also present an important role for Pax-5 in the phenotypic transitioning processes and aggressive features associated with breast cancer malignancy and disease progression.


Asunto(s)
Neoplasias de la Mama/genética , Cadherinas/genética , Regulación Neoplásica de la Expresión Génica , Factor de Transcripción PAX5/genética , Antígenos CD , Western Blotting , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Cadherinas/metabolismo , Adhesión Celular/genética , Línea Celular , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal/genética , Femenino , Células HEK293 , Humanos , Inmunohistoquímica , Células MCF-7 , Glándulas Mamarias Humanas/metabolismo , Factor de Transcripción PAX5/metabolismo , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
19.
Clin Epigenetics ; 8: 46, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27134688

RESUMEN

BACKGROUND: 5-Azacytidine (5-AZA), a DNA methyl transferase inhibitor, is a clinically used epigenetic drug for cancer therapy. Recently, we have shown that 5-AZA upregulates ten-eleven translocation (TET) protein expression in hepatocellular carcinoma (HCC) cells, which induce active demethylation. Vitamin C facilitates TET activity and enhances active demethylation. The aim of this study is to investigate whether vitamin C is able to enhance the effect of 5-AZA on active demethylation and to evaluate its consequence in HCC cell lines. METHODS: HCC cell lines (Huh7 and HLE) were treated with 5-AZA and vitamin C. After 48 h of treatment, viability (resazurin conversion), toxicity (lactose dehydrogenase (LDH) release), and proliferation ((proliferating cell nuclear antigen (PCNA)) of single- and combined-treated cells were assessed. The effect of the treatment on 5-hydroxymethylcytosine (5hmC) intensity (immunofluorescence (IF) staining), TET, Snail, GADD45B, and P21 mRNA (real-time PCR) and protein expression (Western blot) were investigated. RESULTS: Our results indicated that vitamin C enhances the anti-proliferative and apoptotic effect of 5-AZA in HCC cell lines. By further analyzing the events leading to cell cycle arrest, we have shown for the first time in HCC that the combination of 5-AZA and vitamin C leads to an enhanced downregulation of Snail expression, a key transcription factor governing epithelial-mesenchymal transition (EMT) process, and cell cycle arrest. CONCLUSIONS: We conclude that when combined with 5-AZA, vitamin C enhances TET activity in HCC cells, leading to induction of active demethylation. An increase in P21 expression as a consequence of downregulation of Snail accompanied by the induction of GADD45B expression is the main mechanism leading to cell cycle arrest in HCCs.


Asunto(s)
Ácido Ascórbico/farmacología , Azacitidina/farmacología , Carcinoma Hepatocelular/genética , Puntos de Control del Ciclo Celular/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Neoplasias Hepáticas/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , Sinergismo Farmacológico , Transición Epitelial-Mesenquimal/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos
20.
J Cancer ; 7(14): 2035-2044, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28070224

RESUMEN

The study of genetic factors regulating breast cancer malignancy is a top priority to mitigate the morbidity and mortality associated with this disease. One of these factors, Pax-5, modulates cancer aggressiveness through the regulation of various components of the epithelial to mesenchymal transitioning (EMT) process. We have previously reported that Pax-5 expression profiles in cancer tissues inversely correlate with those of the Focal Adhesion Kinase (FAK), a potent activator of breast cancer malignancy. In this study, we set out to elucidate the molecular and regulatory relationship between Pax-5 and FAK in breast cancer processes. Interestingly, we found that Pax-5 mediated suppression of breast cancer cell migration is dependent of FAK activity. Our mechanistic examination revealed that Pax-5 inhibits FAK expression and activation. We also demonstrate that Pax-5 is a potent modulator of FAK repressors (p53 and miR-135b) and activator (NFκB) which results in the overall suppression of FAK-mediated signaling cascades. Altogether, our findings bring more insight to the molecular triggers regulating phenotypic transitioning process and signaling cascades leading to breast cancer progression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA