Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39123876

RESUMEN

Electroencephalography (EEG) is a non-invasive method used to track human brain activity over time. The time-locked EEG to an external event is known as event-related potential (ERP). ERP can be a biomarker of human perception and other cognitive processes. The success of ERP research depends on the laboratory conditions and attentiveness of the test subjects. Specifically, the inability to control experimental variables has reduced ERP research in the real world. This study collected EEG data under various experimental circumstances within an auditory oddball paradigm experiment to enable the use of ERP as an active biomarker in normal laboratory conditions. Then, ERP epochs were analyzed to identify unfocused epochs, affected by typical artifacts and external distortion. For the initial comparison, the ability of four unsupervised machine learning algorithms (MLAs) was evaluated to identify unfocused epochs. Then, their accuracy was compared with the human inspection and a current EEG analysis tool (EEGLab). All four MLAs were typically 95-100% accurate. In summary, our analysis finds that humans might miss subtle differences in the regular ERP patterns, but MLAs could efficiently identify those. Thus, our analysis suggests that unsupervised MLAs perform better for detecting unfocused ERP epochs compared with the other two standard methods.


Asunto(s)
Algoritmos , Electroencefalografía , Potenciales Evocados , Aprendizaje Automático , Humanos , Electroencefalografía/métodos , Masculino , Femenino , Potenciales Evocados/fisiología , Adulto , Encéfalo/fisiología , Procesamiento de Señales Asistido por Computador , Adulto Joven
2.
Prog Brain Res ; 287: 91-109, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39097360

RESUMEN

Wearable electroencephalography (EEG) and electrocardiography (ECG) devices may offer a non-invasive, user-friendly, and cost-effective approach for assessing well-being (WB) in real-world settings. However, challenges remain in dealing with signal artifacts (such as environmental noise and movements) and identifying robust biomarkers. We evaluated the feasibility of using portable hardware to identify potential EEG and heart-rate variability (HRV) correlates of WB. We collected simultaneous ultrashort (2-min) EEG and ECG data from 60 individuals in real-world settings using a wrist ECG electrode connected to a 4-channel wearable EEG headset. These data were processed, assessed for signal quality, and analyzed using the open-source EEGLAB BrainBeats plugin to extract several theory-driven metrics as potential correlates of WB. Namely, the individual alpha frequency (IAF), frontal and posterior alpha asymmetry, and signal entropy for EEG. SDNN, the low/high frequency (LF/HF) ratio, the Poincaré SD1/SD2 ratio, and signal entropy for HRV. We assessed potential associations between these features and the main WB dimensions (hedonic, eudaimonic, global, physical, and social) implementing a pairwise correlation approach, robust Spearman's correlations, and corrections for multiple comparisons. Only eight files showed poor signal quality and were excluded from the analysis. Eudaimonic (psychological) WB was positively correlated with SDNN and the LF/HF ratio. EEG posterior alpha asymmetry was positively correlated with Physical WB (i.e., sleep and pain levels). No relationships were found with the other metrics, or between EEG and HRV metrics. These physiological metrics enable a quick, objective assessment of well-being in real-world settings using scalable, user-friendly tools.


Asunto(s)
Electrocardiografía , Electroencefalografía , Frecuencia Cardíaca , Dispositivos Electrónicos Vestibles , Humanos , Electroencefalografía/instrumentación , Electroencefalografía/métodos , Frecuencia Cardíaca/fisiología , Masculino , Femenino , Adulto , Adulto Joven , Persona de Mediana Edad , Procesamiento de Señales Asistido por Computador , Encéfalo/fisiología
3.
Front Neuroergon ; 5: 1358660, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38989056

RESUMEN

Introduction: To understand brain function in natural real-world settings, it is crucial to acquire brain activity data in noisy environments with diverse artifacts. Electroencephalography (EEG), while susceptible to environmental and physiological artifacts, can be cleaned using advanced signal processing techniques like Artifact Subspace Reconstruction (ASR) and Independent Component Analysis (ICA). This study aims to demonstrate that ASR and ICA can effectively extract brain activity from the substantial artifacts occurring while skateboarding on a half-pipe ramp. Methods: A dual-task paradigm was used, where subjects were presented with auditory stimuli during skateboarding and rest conditions. The effectiveness of ASR and ICA in cleaning artifacts was evaluated using a support vector machine to classify the presence or absence of a sound stimulus in single-trial EEG data. The study evaluated the effectiveness of ASR and ICA in artifact cleaning using five different pipelines: (1) Minimal cleaning (bandpass filtering), (2) ASR only, (3) ICA only, (4) ICA followed by ASR (ICAASR), and (5) ASR preceding ICA (ASRICA). Three skateboarders participated in the experiment. Results: Results showed that all ICA-containing pipelines, especially ASRICA (69%, 68%, 63%), outperformed minimal cleaning (55%, 52%, 50%) in single-trial classification during skateboarding. The ASRICA pipeline performed significantly better than other pipelines containing ICA for two of the three subjects, with no other pipeline performing better than ASRICA. The superior performance of ASRICA likely results from ASR removing non-stationary artifacts, enhancing ICA decomposition. Evidenced by ASRICA identifying more brain components via ICLabel than ICA alone or ICAASR for all subjects. For the rest condition, with fewer artifacts, the ASRICA pipeline (71%, 82%, 75%) showed slight improvement over minimal cleaning (73%, 70%, 72%), performing significantly better for two subjects. Discussion: This study demonstrates that ASRICA can effectively clean artifacts to extract single-trial brain activity during skateboarding. These findings affirm the feasibility of recording brain activity during physically demanding tasks involving substantial body movement, laying the groundwork for future research into the neural processes governing complex and coordinated body movements.

4.
Brain Topogr ; 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37697212

RESUMEN

Microstate analysis is a multivariate method that enables investigations of the temporal dynamics of large-scale neural networks in EEG recordings of human brain activity. To meet the enormously increasing interest in this approach, we provide a thoroughly updated version of the first open source EEGLAB toolbox for the standardized identification, visualization, and quantification of microstates in resting-state EEG data. The toolbox allows scientists to (i) identify individual, mean, and grand mean microstate maps using topographical clustering approaches, (ii) check data quality and detect outlier maps, (iii) visualize, sort, and label individual, mean, and grand mean microstate maps according to published maps, (iv) compare topographical similarities of group and grand mean microstate maps and quantify shared variances, (v) obtain the temporal dynamics of the microstate classes in individual EEGs, (vi) export quantifications of these temporal dynamics of the microstates for statistical tests, and finally, (vii) test for topographical differences between groups and conditions using topographic analysis of variance (TANOVA). Here, we introduce the toolbox in a step-by-step tutorial, using a sample dataset of 34 resting-state EEG recordings that are publicly available to follow along with this tutorial. The goals of this manuscript are (a) to provide a standardized, freely available toolbox for resting-state microstate analysis to the scientific community, (b) to allow researchers to use best practices for microstate analysis by following a step-by-step tutorial, and (c) to improve the methodological standards of microstate research by providing previously unavailable functions and recommendations on critical decisions required in microstate analyses.

5.
Neuroinformatics ; 19(2): 319-345, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32845497

RESUMEN

Phase-amplitude coupling (PAC) is proposed to play an essential role in coordinating the processing of information on local and global scales. In recent years, the methods able to reveal trustworthy PAC has gained considerable interest. However, the intrinsic features of some signals can lead to the identification of spurious or waveform-dependent coupling. This prompted us to develop an easily accessible tool that could be used to differentiate spurious from authentic PAC. Here, we propose a new tool for more reliable detection of PAC named the Extended Modulation Index (eMI) based on the classical Modulation Index measure of coupling. eMI is suitable both for continuous and epoched data and allows estimation of the statistical significance of each pair of frequencies for phase and for amplitude in the whole comodulogram in the framework of extreme value statistics. We compared eMI with the reference PAC measures-direct PAC estimator (a modification of Mean Vector Length) and standard Modulation Index. All three methods were tested using computer-simulated data and actual local field potential recordings from freely moving rats. All methods exhibited similar properties in terms of sensitivity and specificity of PAC detection. eMI proved to be more selective in the dimension of frequency for phase. One of the novelty's offered by eMI is a heuristic algorithm for classification of PAC as Reliable or Ambiguous. It relies on analysis of the relation between the spectral properties of the signal and the detected coupling. Moreover, eMI generates visualizations that support further evaluation of the coupling properties. It also introduces the concept of the polar phase-histogram to study phase relations of coupled slow and fast oscillations. We discuss the extent to which eMI addresses the known problems of interpreting PAC. The Matlab® toolbox implementing eMI framework, and the two reference PAC estimators is freely available as EEGLAB plugin at https://github.com/GabrielaJurkiewicz/ePAC .


Asunto(s)
Potenciales de Acción/fisiología , Algoritmos , Encéfalo/fisiología , Simulación por Computador , Procesamiento de Señales Asistido por Computador , Animales , Masculino , Modelos Neurológicos , Distribución Normal , Ratas
6.
Front Neurosci ; 14: 610388, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33519362

RESUMEN

Reproducibility is a cornerstone of scientific communication without which one cannot build upon each other's work. Because modern human brain imaging relies on many integrated steps with a variety of possible algorithms, it has, however, become impossible to report every detail of a data processing workflow. In response to this analytical complexity, community recommendations are to share data analysis pipelines (scripts that implement workflows). Here we show that this can easily be done using EEGLAB and tools built around it. BIDS tools allow importing all the necessary information and create a study from electroencephalography (EEG)-Brain Imaging Data Structure compliant data. From there preprocessing can be carried out in only a few steps using EEGLAB and statistical analyses performed using the LIMO EEG plug-in. Using Wakeman and Henson (2015) face dataset, we illustrate how to prepare data and build different statistical models, a standard factorial design (faces ∗ repetition), and a more modern trial-based regression approach for the stimulus repetition effect, all in a few reproducible command lines.

7.
Front Neuroinform ; 12: 45, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30050424

RESUMEN

The pre-operative workup of patients with drug-resistant epilepsy requires in some candidates the identification from intracranial EEG (iEEG) of the seizure-onset zone (SOZ), defined as the area responsible of the generation of the seizure and therefore candidate for resection. High-frequency oscillations (HFOs) contained in the iEEG signal have been proposed as biomarker of the SOZ. Their visual identification is a very onerous process and an automated detection tool could be an extremely valuable aid for clinicians, reducing operator-dependent bias, and computational time. In this manuscript, we present the EPINETLAB software, developed as a collection of routines integrated in the EEGLAB framework that aim to provide clinicians with a structured analysis pipeline for HFOs detection and SOZ identification. The tool implements an analysis strategy developed by our group and underwent a preliminary clinical validation that identifies the HFOs area by extracting the statistical properties of HFOs signal and that provides useful information for a topographic characterization of the relationship between clinically defined SOZ and HFO area. Additional functionalities such as inspection of spectral properties of ictal iEEG data and import and analysis of source-space magnetoencephalographic (MEG) data were also included. EPINETLAB was developed with user-friendliness in mind to support clinicians in the identification and quantitative assessment of HFOs in iEEG and source space MEG data and aid the evaluation of the SOZ for pre-surgical assessment.

8.
Front Neurosci ; 12: 309, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29867321

RESUMEN

Electroencephalography (EEG) source localization approaches are often used to disentangle the spatial patterns mixed up in scalp EEG recordings. However, approaches differ substantially between experiments, may be strongly parameter-dependent, and results are not necessarily meaningful. In this paper we provide a pipeline for EEG source estimation, from raw EEG data pre-processing using EEGLAB functions up to source-level analysis as implemented in Brainstorm. The pipeline is tested using a data set of 10 individuals performing an auditory attention task. The analysis approach estimates sources of 64-channel EEG data without the prerequisite of individual anatomies or individually digitized sensor positions. First, we show advanced EEG pre-processing using EEGLAB, which includes artifact attenuation using independent component analysis (ICA). ICA is a linear decomposition technique that aims to reveal the underlying statistical sources of mixed signals and is further a powerful tool to attenuate stereotypical artifacts (e.g., eye movements or heartbeat). Data submitted to ICA are pre-processed to facilitate good-quality decompositions. Aiming toward an objective approach on component identification, the semi-automatic CORRMAP algorithm is applied for the identification of components representing prominent and stereotypic artifacts. Second, we present a step-wise approach to estimate active sources of auditory cortex event-related processing, on a single subject level. The presented approach assumes that no individual anatomy is available and therefore the default anatomy ICBM152, as implemented in Brainstorm, is used for all individuals. Individual noise modeling in this dataset is based on the pre-stimulus baseline period. For EEG source modeling we use the OpenMEEG algorithm as the underlying forward model based on the symmetric Boundary Element Method (BEM). We then apply the method of dynamical statistical parametric mapping (dSPM) to obtain physiologically plausible EEG source estimates. Finally, we show how to perform group level analysis in the time domain on anatomically defined regions of interest (auditory scout). The proposed pipeline needs to be tailored to the specific datasets and paradigms. However, the straightforward combination of EEGLAB and Brainstorm analysis tools may be of interest to others performing EEG source localization.

9.
Front Neurosci ; 12: 236, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29692705

RESUMEN

Existing tools for the preprocessing of EEG data provide a large choice of methods to suitably prepare and analyse a given dataset. Yet it remains a challenge for the average user to integrate methods for batch processing of the increasingly large datasets of modern research, and compare methods to choose an optimal approach across the many possible parameter configurations. Additionally, many tools still require a high degree of manual decision making for, e.g., the classification of artifacts in channels, epochs or segments. This introduces extra subjectivity, is slow, and is not reproducible. Batching and well-designed automation can help to regularize EEG preprocessing, and thus reduce human effort, subjectivity, and consequent error. The Computational Testing for Automated Preprocessing (CTAP) toolbox facilitates: (i) batch processing that is easy for experts and novices alike; (ii) testing and comparison of preprocessing methods. Here we demonstrate the application of CTAP to high-resolution EEG data in three modes of use. First, a linear processing pipeline with mostly default parameters illustrates ease-of-use for naive users. Second, a branching pipeline illustrates CTAP's support for comparison of competing methods. Third, a pipeline with built-in parameter-sweeping illustrates CTAP's capability to support data-driven method parameterization. CTAP extends the existing functions and data structure from the well-known EEGLAB toolbox, based on Matlab, and produces extensive quality control outputs. CTAP is available under MIT open-source licence from https://github.com/bwrc/ctap.

10.
Front Neurosci ; 12: 48, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29472836

RESUMEN

Here we present an application of an EEG processing pipeline customizing EEGLAB and FieldTrip functions, specifically optimized to flexibly analyze EEG data based on single trial information. The key component of our approach is to create a comprehensive 3-D EEG data structure including all trials and all participants maintaining the original order of recording. This allows straightforward access to subsets of the data based on any information available in a behavioral data structure matched with the EEG data (experimental conditions, but also performance indicators, such accuracy or RTs of single trials). In the present study we exploit this structure to compute linear mixed models (LMMs, using lmer in R) including random intercepts and slopes for items. This information can easily be read out from the matched behavioral data, whereas it might not be accessible in traditional ERP approaches without substantial effort. We further provide easily adaptable scripts for performing cluster-based permutation tests (as implemented in FieldTrip), as a more robust alternative to traditional omnibus ANOVAs. Our approach is particularly advantageous for data with parametric within-subject covariates (e.g., performance) and/or multiple complex stimuli (such as words, faces or objects) that vary in features affecting cognitive processes and ERPs (such as word frequency, salience or familiarity), which are sometimes hard to control experimentally or might themselves constitute variables of interest. The present dataset was recorded from 40 participants who performed a visual search task on previously unfamiliar objects, presented either visually intact or blurred. MATLAB as well as R scripts are provided that can be adapted to different datasets.

11.
Data Brief ; 16: 227-230, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29226211

RESUMEN

This data note describes an 18-subject EEG (electroencephalogram) data collection from an experiment in which subjects performed a standard visual oddball task. Several research projects have used this data to test artifact detection, classification, transfer learning, EEG preprocessing, blink detection, and automated annotation algorithms. We are releasing the data in three formats to enable benchmarking of EEG algorithms in many areas. The data was acquired using a Biosemi Active 2 EEG headset and includes 64 channels of EEG, 4 channels of EOG (electrooculogram), and 2 mastoid reference channels.

12.
Psychophysiology ; 54(5): 780-791, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28191627

RESUMEN

Independent component analysis (ICA) offers a powerful approach for the isolation and removal of eyeblink artifacts from EEG signals. Manual identification of the eyeblink ICA component by inspection of scalp map projections, however, is prone to error, particularly when nonartifactual components exhibit topographic distributions similar to the blink. The aim of the present investigation was to determine the extent to which automated approaches for selecting eyeblink-related ICA components could be utilized to replace manual selection. We evaluated popular blink selection methods relying on spatial features (EyeCatch), combined stereotypical spatial and temporal features (ADJUST), and a novel method relying on time series features alone (icablinkmetrics) using both simulated and real EEG data. The results of this investigation suggest that all three methods of automatic component selection are able to accurately identify eyeblink-related ICA components at or above the level of trained human observers. However, icablinkmetrics, in particular, appears to provide an effective means of automating ICA artifact rejection while at the same time eliminating human errors inevitable during manual component selection and false positive component identifications common in other automated approaches. Based upon these findings, best practices for (a) identifying artifactual components via automated means, and (b) reducing the accidental removal of signal-related ICA components are discussed.


Asunto(s)
Algoritmos , Artefactos , Parpadeo , Corteza Cerebral/fisiología , Electroencefalografía/métodos , Procesamiento de Señales Asistido por Computador , Simulación por Computador , Procesamiento Automatizado de Datos/métodos , Electrooculografía/métodos , Humanos , Programas Informáticos , Estadística como Asunto
13.
Front Neurosci ; 11: 12, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28217081

RESUMEN

Electroencephalography (EEG) offers a platform for studying the relationships between behavioral measures, such as blink rate and duration, with neural correlates of fatigue and attention, such as theta and alpha band power. Further, the existence of EEG studies covering a variety of subjects and tasks provides opportunities for the community to better characterize variability of these measures across tasks and subjects. We have implemented an automated pipeline (BLINKER) for extracting ocular indices such as blink rate, blink duration, and blink velocity-amplitude ratios from EEG channels, EOG channels, and/or independent components (ICs). To illustrate the use of our approach, we have applied the pipeline to a large corpus of EEG data (comprising more than 2000 datasets acquired at eight different laboratories) in order to characterize variability of certain ocular indicators across subjects. We also investigate dependence of ocular indices on task in a shooter study. We have implemented our algorithms in a freely available MATLAB toolbox called BLINKER. The toolbox, which is easy to use and can be applied to collections of data without user intervention, can automatically discover which channels or ICs capture blinks. The tools extract blinks, calculate common ocular indices, generate a report for each dataset, dump labeled images of the individual blinks, and provide summary statistics across collections. Users can run BLINKER as a script or as a plugin for EEGLAB. The toolbox is available at https://github.com/VisLab/EEG-Blinks. User documentation and examples appear at http://vislab.github.io/EEG-Blinks/.

14.
Neuroimage ; 147: 934-951, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-27771347

RESUMEN

The concurrent use of transcranial magnetic stimulation with electroencephalography (TMS-EEG) is growing in popularity as a method for assessing various cortical properties such as excitability, oscillations and connectivity. However, this combination of methods is technically challenging, resulting in artifacts both during recording and following typical EEG analysis methods, which can distort the underlying neural signal. In this article, we review the causes of artifacts in EEG recordings resulting from TMS, as well as artifacts introduced during analysis (e.g. as the result of filtering over high-frequency, large amplitude artifacts). We then discuss methods for removing artifacts, and ways of designing pipelines to minimise analysis-related artifacts. Finally, we introduce the TMS-EEG signal analyser (TESA), an open-source extension for EEGLAB, which includes functions that are specific for TMS-EEG analysis, such as removing and interpolating the TMS pulse artifact, removing and minimising TMS-evoked muscle activity, and analysing TMS-evoked potentials. The aims of TESA are to provide users with easy access to current TMS-EEG analysis methods and to encourage direct comparisons of these methods and pipelines. It is hoped that providing open-source functions will aid in both improving and standardising analysis across the field of TMS-EEG research.


Asunto(s)
Artefactos , Encéfalo/fisiología , Electroencefalografía/métodos , Potenciales Evocados/fisiología , Estimulación Magnética Transcraneal/métodos , Electroencefalografía/normas , Humanos , Estimulación Magnética Transcraneal/normas
15.
Clin EEG Neurosci ; 48(4): 295-300, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27837050

RESUMEN

EEG records the spontaneous electrical activity of the brain using multiple electrodes placed on the scalp, and it provides a wealth of information related to the functions of brain. Nevertheless, the signals from the electrodes cannot be directly applied to a diagnostic tool like brain mapping as they undergo a "mixing" process because of the volume conduction effect in the scalp. A pervasive problem in neuroscience is determining which regions of the brain are active, given voltage measurements at the scalp. Because of which, there has been a surge of interest among the biosignal processing community to investigate the process of mixing and unmixing to identify the underlying active sources. According to the assumptions of independent component analysis (ICA) algorithms, the resultant mixture obtained from the scalp can be closely approximated by a linear combination of the "actual" EEG signals emanating from the underlying sources of electrical activity in the brain. As a consequence, using these well-known ICA techniques in preprocessing of the EEG signals prior to clinical applications could result in development of diagnostic tool like quantitative EEG which in turn can assist the neurologists to gain noninvasive access to patient-specific cortical activity, which helps in treating neuropathologies like seizure disorders. The popular and proven ICA schemes mentioned in various literature and applications were selected (which includes Infomax, JADE, and SOBI) and applied on generalized seizure disorder samples using EEGLAB toolbox in MATLAB environment to see their usefulness in source separations; and they were validated by the expert neurologist for clinical relevance in terms of pathologies on brain functionalities. The performance of Infomax method was found to be superior when compared with other ICA schemes applied on EEG and it has been established based on the validations carried by expert neurologist for generalized seizure and its clinical correlation. The results are encouraging for furthering the studies in the direction of developing useful brain mapping tools using ICA methods.


Asunto(s)
Algoritmos , Encéfalo/fisiopatología , Diagnóstico por Computador/métodos , Electroencefalografía/métodos , Epilepsia Generalizada/diagnóstico , Epilepsia Generalizada/fisiopatología , Análisis de Componente Principal , Adulto , Mapeo Encefálico/métodos , Interpretación Estadística de Datos , Humanos , Masculino , Persona de Mediana Edad , Variaciones Dependientes del Observador , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
16.
Psychophysiology ; 54(3): 386-398, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28026876

RESUMEN

Despite the growing use of independent component analysis (ICA) algorithms for isolating and removing eyeblink-related activity from EEG data, we have limited understanding of how variability associated with ICA uncertainty may be influencing the reconstructed EEG signal after removing the eyeblink artifact components. To characterize the magnitude of this ICA uncertainty and to understand the extent to which it may influence findings within ERP and EEG investigations, ICA decompositions of EEG data from 32 college-aged young adults were repeated 30 times for three popular ICA algorithms. Following each decomposition, eyeblink components were identified and removed. The remaining components were back-projected, and the resulting clean EEG data were further used to analyze ERPs. Findings revealed that ICA uncertainty results in variation in P3 amplitude as well as variation across all EEG sampling points, but differs across ICA algorithms as a function of the spatial location of the EEG channel. This investigation highlights the potential of ICA uncertainty to introduce additional sources of variance when the data are back-projected without artifact components. Careful selection of ICA algorithms and parameters can reduce the extent to which ICA uncertainty may introduce an additional source of variance within ERP/EEG studies.


Asunto(s)
Artefactos , Parpadeo , Electroencefalografía/métodos , Potenciales Evocados , Adolescente , Adulto , Algoritmos , Interpretación Estadística de Datos , Femenino , Humanos , Masculino , Adulto Joven
17.
Clin Neurophysiol ; 127(6): 2489-99, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27178869

RESUMEN

OBJECTIVE: High-frequency oscillations (HFOs) can be spontaneously generated by seizure-onset and functionally-important areas. We determined if consideration of the spectral frequency bands of coupled slow-waves could distinguish between epileptogenic and physiological HFOs. METHODS: We studied a consecutive series of 13 children with focal epilepsy who underwent extraoperative electrocorticography. We measured the occurrence rate of HFOs during slow-wave sleep at each electrode site. We subsequently determined the performance of HFO rate for localization of seizure-onset sites and undesirable detection of nonepileptic sensorimotor-visual sites defined by neurostimulation. We likewise determined the predictive performance of modulation index: MI(XHz)&(YHz), reflecting the strength of coupling between amplitude of HFOsXHz and phase of slow-waveYHz. The predictive accuracy was quantified using the area under the curve (AUC) on receiver-operating characteristics analysis. RESULTS: Increase in HFO rate localized seizure-onset sites (AUC⩾0.72; p<0.001), but also undesirably detected nonepileptic sensorimotor-visual sites (AUC⩾0.58; p<0.001). Increase in MI(HFOs)&(3-4Hz) also detected both seizure-onset (AUC⩾0.74; p<0.001) and nonepileptic sensorimotor-visual sites (AUC⩾0.59; p<0.001). Increase in subtraction-MIHFOs [defined as subtraction of MI(HFOs)&(0.5-1Hz) from MI(HFOs)&(3-4Hz)] localized seizure-onset sites (AUC⩾0.71; p<0.001), but rather avoided detection of nonepileptic sensorimotor-visual sites (AUC⩽0.42; p<0.001). CONCLUSION: Our data suggest that epileptogenic HFOs may be coupled with slow-wave3-4Hz more preferentially than slow-wave0.5-1Hz, whereas physiologic HFOs with slow-wave0.5-1Hz more preferentially than slow-wave3-4Hz during slow-wave sleep. SIGNIFICANCE: Further studies in larger samples are warranted to determine if consideration of the spectral frequency bands of slow-waves coupled with HFOs can positively contribute to presurgical evaluation of patients with focal epilepsy.


Asunto(s)
Mapeo Encefálico , Ondas Encefálicas , Epilepsia/fisiopatología , Corteza Sensoriomotora/fisiopatología , Adolescente , Niño , Femenino , Humanos , Masculino , Corteza Sensoriomotora/fisiología , Sueño
18.
Front Neuroinform ; 9: 16, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26150785

RESUMEN

The technology to collect brain imaging and physiological measures has become portable and ubiquitous, opening the possibility of large-scale analysis of real-world human imaging. By its nature, such data is large and complex, making automated processing essential. This paper shows how lack of attention to the very early stages of an EEG preprocessing pipeline can reduce the signal-to-noise ratio and introduce unwanted artifacts into the data, particularly for computations done in single precision. We demonstrate that ordinary average referencing improves the signal-to-noise ratio, but that noisy channels can contaminate the results. We also show that identification of noisy channels depends on the reference and examine the complex interaction of filtering, noisy channel identification, and referencing. We introduce a multi-stage robust referencing scheme to deal with the noisy channel-reference interaction. We propose a standardized early-stage EEG processing pipeline (PREP) and discuss the application of the pipeline to more than 600 EEG datasets. The pipeline includes an automatically generated report for each dataset processed. Users can download the PREP pipeline as a freely available MATLAB library from http://eegstudy.org/prepcode.

19.
J Neurosci Methods ; 253: 193-205, 2015 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-26162614

RESUMEN

BACKGROUND: Empirical mode decomposition (EMD) is an empirical data decomposition technique. Recently there is growing interest in applying EMD in the biomedical field. NEW METHOD: EMDLAB is an extensible plug-in for the EEGLAB toolbox, which is an open software environment for electrophysiological data analysis. RESULTS: EMDLAB can be used to perform, easily and effectively, four common types of EMD: plain EMD, ensemble EMD (EEMD), weighted sliding EMD (wSEMD) and multivariate EMD (MEMD) on EEG data. In addition, EMDLAB is a user-friendly toolbox and closely implemented in the EEGLAB toolbox. COMPARISON WITH EXISTING METHODS: EMDLAB gains an advantage over other open-source toolboxes by exploiting the advantageous visualization capabilities of EEGLAB for extracted intrinsic mode functions (IMFs) and Event-Related Modes (ERMs) of the signal. CONCLUSIONS: EMDLAB is a reliable, efficient, and automated solution for extracting and visualizing the extracted IMFs and ERMs by EMD algorithms in EEG study.


Asunto(s)
Algoritmos , Encéfalo/fisiología , Procesamiento de Señales Asistido por Computador , Programas Informáticos , Electroencefalografía , Electromiografía , Humanos , Dinámicas no Lineales
20.
J Neurosci Methods ; 250: 47-63, 2015 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-25791012

RESUMEN

BACKGROUND: Electroencephalographic data are easily contaminated by signals of non-neural origin. Independent component analysis (ICA) can help correct EEG data for such artifacts. Artifact independent components (ICs) can be identified by experts via visual inspection. But artifact features are sometimes ambiguous or difficult to notice, and even experts may disagree about how to categorise a particular component. It is therefore important to inform users on artifact properties, and give them the opportunity to intervene. NEW METHOD: Here we first describe artifacts captured by ICA. We review current methods to automatically select artifactual components for rejection, and introduce the SASICA software, implementing several novel selection algorithms as well as two previously described automated methods (ADJUST, Mognon et al. Psychophysiology 2011;48(2):229; and FASTER, Nolan et al. J Neurosci Methods 2010;48(1):152). RESULTS: We evaluate these algorithms by comparing selections suggested by SASICA and other methods to manual rejections by experts. The results show that these methods can inform observers to improve rejections. However, no automated method can accurately isolate artifacts without supervision. The comprehensive and interactive plots produced by SASICA therefore constitute a helpful guide for human users for making final decisions. CONCLUSIONS: Rejecting ICs before EEG data analysis unavoidably requires some level of supervision. SASICA offers observers detailed information to guide selection of artifact ICs. Because it uses quantitative parameters and thresholds, it improves objectivity and reproducibility in reporting pre-processing procedures. SASICA is also a didactic tool that allows users to quickly understand what signal features captured by ICs make them likely to reflect artifacts.


Asunto(s)
Artefactos , Electroencefalografía/métodos , Procesamiento de Señales Asistido por Computador , Algoritmos , Encéfalo/fisiología , Interpretación Estadística de Datos , Electroencefalografía/instrumentación , Movimientos Oculares/fisiología , Humanos , Músculo Esquelético/fisiología , Reconocimiento de Normas Patrones Automatizadas/métodos , Interfaz Usuario-Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA