Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Nutr ; 11: 1343548, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38742022

RESUMEN

Emery-Dreifuss muscular dystrophy (EDMD) is a rare, inherited human disease. Similar to other neuromuscular dystrophies, EDMD is clinically characterized by muscle atrophy and weakness, multi-joint contractures with spine rigidity, and cardiomyopathy. Over time, muscular weakness can lead to dysphagia and a severe lowering of body mass index (BMI), worsening the prognosis. We present the case of a young male patient affected by EDMD, admitted to the hospital for pneumothorax in a severe state of undernourishment. The patient was treated with total parenteral nutrition (TPN) with Smofkabiven®, supplemented with micronutrients (vitamins and trace elements), and with minimal enteral nutrition through food. Within a year, the patient gained 8.5 kg and kept his body weight stable for the 6 years of the follow-up. In this study, we show that TPN ensures the nutritional requirements of EDMD patients in a safe and well-tolerated manner, allowing a considerable and stable improvement in nutritional status, which has a positive impact on the disease itself and the patients' quality of life.

2.
Int J Mol Sci ; 25(10)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38791328

RESUMEN

Inherited muscular diseases (MDs) are genetic degenerative disorders typically caused by mutations in a single gene that affect striated muscle and result in progressive weakness and wasting in affected individuals. Cardiac muscle can also be involved with some variability that depends on the genetic basis of the MD (Muscular Dystrophy) phenotype. Heart involvement can manifest with two main clinical pictures: left ventricular systolic dysfunction with evolution towards dilated cardiomyopathy and refractory heart failure, or the presence of conduction system defects and serious life-threatening ventricular arrhythmias. The two pictures can coexist. In these cases, heart transplantation (HTx) is considered the most appropriate option in patients who are not responders to the optimized standard therapeutic protocols. However, cardiac transplant is still considered a relative contraindication in patients with inherited muscle disorders and end-stage cardiomyopathies. High operative risk related to muscle impairment and potential graft involvement secondary to the underlying myopathy have been the two main reasons implicated in the generalized reluctance to consider cardiac transplant as a viable option. We report an overview of cardiac involvement in MDs and its possible association with the underlying molecular defect, as well as a systematic review of HTx outcomes in patients with MD-related end-stage dilated cardiomyopathy, published so far in the literature.


Asunto(s)
Cardiomiopatía Dilatada , Trasplante de Corazón , Distrofias Musculares , Humanos , Cardiomiopatía Dilatada/cirugía , Trasplante de Corazón/métodos , Distrofias Musculares/complicaciones
3.
Cells ; 13(2)2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38247853

RESUMEN

In muscle cells subjected to mechanical stimulation, LINC complex and cytoskeletal proteins are basic to preserve cellular architecture and maintain nuclei orientation and positioning. In this context, the role of lamin A/C remains mostly elusive. This study demonstrates that in human myoblasts subjected to mechanical stretching, lamin A/C recruits desmin and plectin to the nuclear periphery, allowing a proper spatial orientation of the nuclei. Interestingly, in Emery-Dreifuss Muscular Dystrophy (EDMD2) myoblasts exposed to mechanical stretching, the recruitment of desmin and plectin to the nucleus and nuclear orientation were impaired, suggesting that a functional lamin A/C is crucial for the response to mechanical strain. While describing a new mechanism of action headed by lamin A/C, these findings show a structural alteration that could be involved in the onset of the muscle defects observed in muscular laminopathies.


Asunto(s)
Desmina , Lamina Tipo A , Distrofia Muscular de Emery-Dreifuss , Plectina , Humanos , Desmina/metabolismo , Distrofia Muscular de Emery-Dreifuss/genética , Mioblastos , Plectina/metabolismo
4.
Biochem Soc Trans ; 51(3): 1331-1345, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37171063

RESUMEN

Nesprins (nuclear envelope spectrin repeat proteins) are multi-isomeric scaffolding proteins. Giant nesprin-1 and -2 localise to the outer nuclear membrane, interact with SUN (Sad1p/UNC-84) domain-containing proteins at the inner nuclear membrane to form the LInker of Nucleoskeleton and Cytoskeleton (LINC) complex, which, in association with lamin A/C and emerin, mechanically couples the nucleus to the cytoskeleton. Despite ubiquitous expression of nesprin giant isoforms, pathogenic mutations in nesprin-1 and -2 are associated with tissue-specific disorders, particularly related to striated muscle such as dilated cardiomyopathy and Emery-Dreifuss muscular dystrophy. Recent evidence suggests this muscle-specificity might be attributable in part, to the small muscle specific isoform, nesprin-1α2, which has a novel role in striated muscle function. Our current understanding of muscle-specific functions of nesprin-1 and its isoforms will be summarised in this review to provide insight into potential pathological mechanisms of nesprin-related muscle disease and may inform potential targets of therapeutic modulation.


Asunto(s)
Mecanotransducción Celular , Enfermedades Musculares , Humanos , Núcleo Celular/metabolismo , Músculo Esquelético/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Membrana Nuclear/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Animales
5.
Neuromuscul Disord ; 32(9): 718-727, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35922275

RESUMEN

Emery-Dreifuss muscular dystrophy (EDMD) is a rare inherited disorder usually presenting in childhood with early contractures, slowly progressive scapulohumeroperoneal weakness/atrophy and potentially fatal dilated cardiomyopathy with conduction defects. We evaluated clinical and genetic findings of 32 patients with EDMD phenotype from 14 unrelated families, diagnosed at the Department of Neurology, Istanbul Faculty of Medicine between 1989 and 2022. Twenty-three patients from 8 unrelated families were diagnosed with EDMD1 (58%), 5 patients from 3 families with EDMD2 (21%), and 2 patients from 1 family with the rare EDMD3 (7%). Genetic diagnosis was achieved in 12 unrelated kinships with classical EDMD phenotype (86%) by applying panel testing, but no mutation could be determined in 2 patients with classical EDMD phenotype from 2 unrelated families (14%). Three novel pathogenic variants (c.19delC, c.416_417delTT, c.123C > G) in EMD, and a novel (c.1441dupT) heterozygous likely pathogenic variant in LMNA gene were found. This is the largest cohort from Turkey, expanding the genetic spectrum of EDMD, and providing clues for genetic testing of EDMD in Turkey.


Asunto(s)
Distrofia Muscular de Emery-Dreifuss , Estudios de Seguimiento , Humanos , Distrofia Muscular de Emery-Dreifuss/diagnóstico , Distrofia Muscular de Emery-Dreifuss/genética , Distrofia Muscular de Emery-Dreifuss/patología , Mutación , Fenotipo , Turquía
6.
Hum Mutat ; 43(9): 1234-1238, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35607917

RESUMEN

Emery-Dreifuss muscular dystrophy (EDMD) is a hereditary muscle disease, characterized by the clinical triade of early-onset joint contractures, progressive muscle weakness, and cardiac involvement. Pathogenic variants in FHL1 can cause a rare X-linked recessive form of EDMD, type 6. We report three men with novel variants in FHL1 leading to EDMD6. The onset of muscle symptoms was in late adulthood and muscle weakness was not prominent in either of the patients. All patients had hypertrophic cardiomyopathy and one of them also had cardiac arrhythmias. Western blot performed on muscle biopsies from two of the patients showed no FHL1 protein expression. We predict that the variant in the third patient also leads to the absence of FHL1 protein. Complete loss of all FHL1 isoforms combined with mild muscle involvement supports the hypothesis that loss of all FHL1 isoforms is more benign than the cytotoxic effects of expressed FHL1 protein with pathogenic missense variants.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Proteínas con Dominio LIM , Proteínas Musculares , Distrofia Muscular de Emery-Dreifuss , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas con Dominio LIM/genética , Masculino , Proteínas Musculares/genética , Distrofia Muscular de Emery-Dreifuss/diagnóstico , Distrofia Muscular de Emery-Dreifuss/genética , Fenotipo , Isoformas de Proteínas/genética
7.
Mol Ther Nucleic Acids ; 27: 1156-1163, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35282412

RESUMEN

Adenine base editors (ABEs), composed of an evolved adenine deaminase fused to the Cas9 nickase, enable efficient and precise A-to-G conversion in various organisms. However, the base editing of some challenging loci with the ABE7.10 system in rabbits was inefficient in our previous study. Here, we show that ABE8.17 and SpRY-ABE8.17 can efficiently induce base editing in mouse and rabbit embryos. In addition, this strategy can be used to precisely mimic clinical point mutations in rabbits. Furthermore, by eliminating the linker in ABE8.17, we created ABE8.17-NL, which achieved efficient base editing within a narrowed window (2-4 nts) in human HEK293FT cells. Collectively, these findings show that ABE8.17 systems can efficiently induce efficient A-to-G base editing at desired sites and that the ABE7.10 system is inefficient, thus providing an efficient way to generate ideal disease models in rabbits.

8.
Cells ; 9(11)2020 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-33142761

RESUMEN

Striated muscle laminopathies are cardiac and skeletal muscle conditions caused by mutations in the lamin A/C gene (LMNA). LMNA codes for the A-type lamins, which are nuclear intermediate filaments that maintain the nuclear structure and nuclear processes such as gene expression. Protein kinase C alpha (PKC-α) interacts with lamin A/C and with several lamin A/C partners involved in striated muscle laminopathies. To determine PKC-α's involvement in muscular laminopathies, PKC-α's localization, activation, and interactions with the A-type lamins were examined in various cell types expressing pathogenic lamin A/C mutations. The results showed aberrant nuclear PKC-α cellular distribution in mutant cells compared to WT. PKC-α activation (phos-PKC-α) was decreased or unchanged in the studied cells expressing LMNA mutations, and the activation of its downstream targets, ERK 1/2, paralleled PKC-α activation alteration. Furthermore, the phos-PKC-α-lamin A/C proximity was altered. Overall, the data showed that PKC-α localization, activation, and proximity with lamin A/C were affected by certain pathogenic LMNA mutations, suggesting PKC-α involvement in striated muscle laminopathies.


Asunto(s)
Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Laminopatías/genética , Laminopatías/metabolismo , Proteína Quinasa C-alfa/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Humanos , Sistema de Señalización de MAP Quinasas , Ratones , Músculo Estriado/patología , Enfermedades Musculares/genética , Enfermedades Musculares/patología , Mutación , Mioblastos/metabolismo , Ratas , Transducción de Señal
10.
Cells ; 9(6)2020 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-32517247

RESUMEN

Reactive Oxygen Species (ROS) are reactive molecules required for the maintenance of physiological functions. Oxidative stress arises when ROS production exceeds the cellular ability to eliminate such molecules. In this study, we showed that oxidative stress induces post-translational modification of the inner nuclear membrane protein emerin. In particular, emerin is phosphorylated at the early stages of the oxidative stress response, while protein phosphorylation is abolished upon recovery from stress. A finely tuned balance between emerin phosphorylation and O-GlcNAcylation seems to govern this dynamic and modulates emerin-BAF interaction and BAF nucleoplasmic localization during the oxidative stress response. Interestingly, emerin post-translational modifications, similar to those observed during the stress response, are detected in cells bearing LMNA gene mutations and are characterized by a free radical generating environment. On the other hand, under oxidative stress conditions, a delay in DNA damage repair and cell cycle progression is found in cells from Emery-Dreifuss Muscular Dystrophy type 1, which do not express emerin. These results suggest a role of the emerin-BAF protein platform in the DNA damage response aimed at counteracting the detrimental effects of elevated levels of ROS.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo , Estrés Oxidativo , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Células HeLa , Humanos , Lamina Tipo A/deficiencia , Lamina Tipo A/metabolismo , Peso Molecular , Distrofia Muscular de Emery-Dreifuss/patología , Fosforilación , Unión Proteica , Transporte de Proteínas , Especies Reactivas de Oxígeno/metabolismo
11.
Genes Dev ; 34(7-8): 560-579, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32139421

RESUMEN

Mutations in the nuclear structural protein lamin A produce rare, tissue-specific diseases called laminopathies. The introduction of a human Emery-Dreifuss muscular dystrophy (EDMD)-inducing mutation into the C. elegans lamin (LMN-Y59C), recapitulates many muscular dystrophy phenotypes, and correlates with hyper-sequestration of a heterochromatic array at the nuclear periphery in muscle cells. Using muscle-specific emerin Dam-ID in worms, we monitored the effects of the mutation on endogenous chromatin. An increased contact with the nuclear periphery along chromosome arms, and an enhanced release of chromosomal centers, coincided with the disease phenotypes of reduced locomotion and compromised sarcomere integrity. The coupling of the LMN-Y59C mutation with the ablation of CEC-4, a chromodomain protein that anchors H3K9-methylated chromatin at the nuclear envelope (NE), suppressed the muscle-associated disease phenotypes. Deletion of cec-4 also rescued LMN-Y59C-linked alterations in chromatin organization and some changes in transcription. Sequences that changed position in the LMN-Y59C mutant, are enriched for E2F (EFL-2)-binding sites, consistent with previous studies suggesting that altered Rb-E2F interaction with lamin A may contribute to muscle dysfunction. In summary, we were able to counteract the dominant muscle-specific defects provoked by LMNA mutation by the ablation of a lamin-associated H3K9me anchor, suggesting a novel therapeutic pathway for EDMD.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Núcleo Celular/genética , Proteínas Cromosómicas no Histona/genética , Eliminación de Gen , Distrofia Muscular de Emery-Dreifuss/genética , Animales , Sitios de Unión/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Núcleo Celular/patología , Cromatina/genética , Modelos Animales de Enfermedad , Genoma de los Helmintos/genética , Laminina/genética , Laminina/metabolismo , Músculos/fisiopatología , Distrofia Muscular de Emery-Dreifuss/fisiopatología , Mutación , Estructura Terciaria de Proteína/genética , Sarcómeros/química , Sarcómeros/genética , Transcripción Genética/genética
12.
Cells ; 10(1)2020 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-33396475

RESUMEN

Intermediate filaments (IFs) commonly have structural elements of a central α-helical coiled-coil domain consisting of coil 1a, coil 1b, coil 2, and their flanking linkers. Recently, the crystal structure of a long lamin A/C fragment was determined and showed detailed features of a tetrameric unit. The structure further suggested a new binding mode between tetramers, designated eA22, where a parallel overlap of coil 1a and coil 2 is the critical interaction. This study investigated the biochemical effects of genetic mutations causing human diseases, focusing on the eA22 interaction. The mutant proteins exhibited either weakened or augmented interactions between coil 1a and coil 2. The ensuing biochemical results indicated that the interaction requires the separation of the coiled-coils in the N-terminal of coil 1a and the C-terminal of coil 2, coupled with the structural transition in the central α-helical rod domain. This study provides insight into the role of coil 1a as a molecular regulator in the elongation of IF proteins.


Asunto(s)
Filamentos Intermedios/metabolismo , Lamina Tipo A/metabolismo , Laminas/metabolismo , Secuencia de Aminoácidos , Línea Celular Tumoral , Dicroismo Circular , Técnica del Anticuerpo Fluorescente , Expresión Génica , Humanos , Filamentos Intermedios/química , Lamina Tipo A/química , Lamina Tipo A/genética , Laminas/química , Laminas/genética , Mutación , Unión Proteica , Conformación Proteica , Conformación Proteica en Hélice alfa , Dominios Proteicos , Multimerización de Proteína , Proteínas Recombinantes
13.
JACC Case Rep ; 2(3): 372-377, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34317245

RESUMEN

A 24-year-old man with muscle cramps and a family history of sudden death presented with palpitations. Electrocardiography showed signs of left ventricular hypertrophy and nonsustained ventricular tachycardia, and imaging studies confirmed hypertrophic cardiomyopathy. Genetic testing revealed a novel FHL1 mutation associated with Emery-Dreifuss muscular dystrophy. An implantable cardioverter-defibrillator was placed. (Level of Difficulty: Advanced.).

14.
Genes (Basel) ; 10(11)2019 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-31718017

RESUMEN

X-linked Emery-Dreifuss muscular dystrophy (EDMD1) affects approximately 1:100,000 male births. Female carriers are usually asymptomatic but, in some cases, they may present clinical symptoms after age 50 at cardiac level, especially in the form of conduction tissue anomalies. The aim of this study was to evaluate the relation between heart involvement in symptomatic EDMD1 carriers and the X-chromosome inactivation (XCI) pattern. The XCI pattern was determined on the lymphocytes of 30 symptomatic and asymptomatic EDMD1 female carriers-25 familial and 5 sporadic cases-seeking genetic advice using the androgen receptor (AR) methylation-based assay. Carriers were subdivided according to whether they were above or below 50 years of age. A variance analysis was performed to compare the XCI pattern between symptomatic and asymptomatic carriers. The results show that 20% of EDMD1 carriers had cardiac symptoms, and that 50% of these were ≥50 years of age. The XCI pattern was similar in both symptomatic and asymptomatic carriers. Conclusions: Arrhythmias in EDMD1 carriers poorly correlate on lymphocytes to a skewed XCI, probably due to (a) the different embryological origin of cardiac conduction tissue compared to lymphocytes or (b) the preferential loss of atrial cells replaced by fibrous tissue.


Asunto(s)
Arritmias Cardíacas/diagnóstico , Tamización de Portadores Genéticos , Proteínas de la Membrana/genética , Distrofia Muscular de Emery-Dreifuss/genética , Proteínas Nucleares/genética , Inactivación del Cromosoma X/genética , Adulto , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatología , Enfermedades Asintomáticas , Línea Celular Tumoral , Femenino , Asesoramiento Genético , Atrios Cardíacos/fisiopatología , Heterocigoto , Humanos , Persona de Mediana Edad , Distrofia Muscular de Emery-Dreifuss/sangre , Distrofia Muscular de Emery-Dreifuss/diagnóstico , Mutación , Fenotipo , Adulto Joven
15.
Micromachines (Basel) ; 10(12)2019 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-31771260

RESUMEN

Micropatterning techniques have been widely used in biology, particularly in studies involving cell adhesion and proliferation on different substrates. Cell micropatterning approaches are also increasingly employed as in vitro tools to investigate intracellular mechanotransduction processes. In this report, we examined how modulating cellular shapes on two-dimensional rectangular fibronectin micropatterns of different widths influences nuclear mechanotransduction mediated by emerin, a nuclear envelope protein implicated in Emery-Dreifuss muscular dystrophy (EDMD). Fibronectin microcontact printing was tested onto glass coverslips functionalized with three different silane reagents (hexamethyldisilazane (HMDS), (3-Aminopropyl)triethoxysilane (APTES) and (3-Glycidyloxypropyl)trimethoxysilane (GPTMS)) using a vapor-phase deposition method. We observed that HMDS provides the most reliable printing surface for cell micropatterning, notably because it forms a hydrophobic organosilane monolayer that favors the retainment of surface antifouling agents on the coverslips. We showed that, under specific mechanical cues, emerin-null human skin fibroblasts display a significantly more deformed nucleus than skin fibroblasts expressing wild type emerin, indicating that emerin plays a crucial role in nuclear adaptability to mechanical stresses. We further showed that proper nuclear responses to forces involve a significant relocation of emerin from the inner nuclear envelope towards the outer nuclear envelope and the endoplasmic reticulum membrane network. Cell micropatterning by fibronectin microcontact printing directly on HMDS-treated glass represents a simple approach to apply steady-state biophysical cues to cells and study their specific mechanobiology responses in vitro.

16.
Cells ; 8(4)2019 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-30934932

RESUMEN

The lamin A/C (LMNA) gene codes for nuclear intermediate filaments constitutive of the nuclear lamina. LMNA has 12 exons and alternative splicing of exon 10 results in two major isoforms-lamins A and C. Mutations found throughout the LMNA gene cause a group of diseases collectively known as laminopathies, of which the type, diversity, penetrance and severity of phenotypes can vary from one individual to the other, even between individuals carrying the same mutation. The majority of the laminopathies affect cardiac and/or skeletal muscles. The underlying molecular mechanisms contributing to such tissue-specific phenotypes caused by mutations in a ubiquitously expressed gene are not yet well elucidated. This review will explore the different phenotypes observed in established models of striated muscle laminopathies and their respective contributions to advancing our understanding of cardiac and skeletal muscle-related laminopathies. Potential future directions for developing effective treatments for patients with lamin A/C mutation-associated cardiac and/or skeletal muscle conditions will be discussed.


Asunto(s)
Laminas/genética , Modelos Biológicos , Músculo Estriado/patología , Enfermedades Musculares/patología , Animales , Modelos Animales de Enfermedad , Humanos , Fenotipo
17.
Cells ; 8(3)2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30871242

RESUMEN

Emerin is an essential LEM (LAP2, Emerin, MAN1) domain protein in metazoans and an integral membrane protein associated with inner and outer nuclear membranes. Mutations in the human EMD gene coding for emerin result in the rare genetic disorder: Emery⁻Dreifuss muscular dystrophy type 1 (EDMD1). This disease belongs to a broader group called laminopathies-a heterogeneous group of rare genetic disorders affecting tissues of mesodermal origin. EDMD1 phenotype is characterized by progressive muscle wasting, contractures of the elbow and Achilles tendons, and cardiac conduction defects. Emerin is involved in many cellular and intranuclear processes through interactions with several partners: lamins; barrier-to-autointegration factor (BAF), ß-catenin, actin, and tubulin. Our study demonstrates the presence of the emerin fraction which associates with mitotic spindle microtubules and centrosomes during mitosis and colocalizes during early mitosis with lamin A/C, BAF, and membranes at the mitotic spindle. Transfection studies with cells expressing EGFP-emerin protein demonstrate that the emerin fusion protein fraction also localizes to centrosomes and mitotic spindle microtubules during mitosis. Transient expression of emerin deletion mutants revealed that the resulting phenotypes vary and are mutant dependent. The most frequent phenotypes include aberrant nuclear shape, tubulin network mislocalization, aberrant mitosis, and mislocalization of centrosomes. Emerin deletion mutants demonstrated different chromatin binding capacities in an in vitro nuclear assembly assay and chromatin-binding properties correlated with the strength of phenotypic alteration in transfected cells. Aberrant tubulin staining and microtubule network phenotype appearance depended on the presence of the tubulin binding region in the expressed deletion mutants. We believe that the association with tubulin might help to "deliver" emerin and associated membranes to decondensing chromatin. Preliminary analyses of cells from Polish patients with EDMD1 revealed that for several mutations thought to be null for emerin protein, a truncated emerin protein was present. We infer that the EDMD1 phenotype may be strengthened by the toxicity of truncated emerin expressed in patients with certain nonsense mutations in EMD.


Asunto(s)
Proteínas de la Membrana/metabolismo , Mitosis , Distrofia Muscular de Emery-Dreifuss/patología , Lámina Nuclear/patología , Proteínas Nucleares/metabolismo , Anticuerpos/metabolismo , Ciclo Celular , Centrosoma/metabolismo , Proteínas de Unión al ADN/metabolismo , Epítopos/metabolismo , Eliminación de Gen , Células HeLa , Humanos , Lamina Tipo A/metabolismo , Proteínas de la Membrana/deficiencia , Microtúbulos/metabolismo , Proteínas Nucleares/deficiencia , Fenotipo , Unión Proteica , Huso Acromático/metabolismo , Tubulina (Proteína)/metabolismo
18.
Int J Mol Sci ; 20(4)2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30781376

RESUMEN

The mechanistic target of rapamycin (mTOR) is a ubiquitous serine/threonine kinase that regulates anabolic and catabolic processes, in response to environmental inputs. The existence of mTOR in numerous cell compartments explains its specific ability to sense stress, execute growth signals, and regulate autophagy. mTOR signaling deregulation is closely related to aging and age-related disorders, among which progeroid laminopathies represent genetically characterized clinical entities with well-defined phenotypes. These diseases are caused by LMNA mutations and feature altered bone turnover, metabolic dysregulation, and mild to severe segmental progeria. Different LMNA mutations cause muscular, adipose tissue and nerve pathologies in the absence of major systemic involvement. This review explores recent advances on mTOR involvement in progeroid and tissue-specific laminopathies. Indeed, hyper-activation of protein kinase B (AKT)/mTOR signaling has been demonstrated in muscular laminopathies, and rescue of mTOR-regulated pathways increases lifespan in animal models of Emery-Dreifuss muscular dystrophy. Further, rapamycin, the best known mTOR inhibitor, has been used to elicit autophagy and degradation of mutated lamin A or progerin in progeroid cells. This review focuses on mTOR-dependent pathogenetic events identified in Emery-Dreifuss muscular dystrophy, LMNA-related cardiomyopathies, Hutchinson-Gilford Progeria, mandibuloacral dysplasia, and type 2 familial partial lipodystrophy. Pharmacological application of mTOR inhibitors in view of therapeutic strategies is also discussed.


Asunto(s)
Laminas/metabolismo , Distrofias Musculares/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Animales , Humanos , Modelos Biológicos
20.
Front Physiol ; 9: 1533, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30425656

RESUMEN

Emery-Dreifuss muscular dystrophy (EDMD) is a genetic condition characterized by early contractures, skeletal muscle weakness, and cardiomyopathy. During the last 20 years, various genetic approaches led to the identification of causal genes of EDMD and related disorders, all encoding nuclear envelope proteins. By their respective localization either at the inner nuclear membrane or the outer nuclear membrane, these proteins interact with each other and establish a connection between the nucleus and the cytoskeleton. Beside this physical link, these proteins are also involved in mechanotransduction, responding to environmental cues, such as increased tension of the cytoskeleton, by the activation or repression of specific sets of genes. This ability of cells to adapt to environmental conditions is altered in EDMD. Increased knowledge on the pathophysiology of EDMD has led to the development of drug or gene therapies that have been tested on mouse models. This review proposed an overview of the functions played by the different proteins involved in EDMD and related disorders and the current therapeutic approaches tested so far.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA