Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
Eur J Pharmacol ; 978: 176787, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38944176

RESUMEN

Malignant renal rhabdoid tumor (MRTK) is an aggressive and rare malignancy primarily affecting infants and young children. The intricate interactions within the Tumor Microenvironment (TME) are crucial in shaping MRTK's progression. This study elucidates the significance of tumor-associated macrophages(TAMs) within this milieu and their interplay with eukaryotic translation initiation factor 4E-binding protein 1 (EIF4EBP1) in tumor cells, collectively contributing to MRTK's malignant advancement. Through comprehensive analysis of clinical samples and the TARGET database, EIF4EBP1 emerges as a central macrophage-associated gene with robust prognostic implications. Elevated EIF4EBP1 expression correlates with poor prognosis and heightened infiltration of TAMs. Functional validation demonstrates that EIF4EBP1 knockdown in G401 cells significantly attenuates self-proliferation, migration, and invasion. Moreover, EIF4EBP1 regulates macrophage recruitment and M2 polarization through the ERK/P38 MAPK-MIF axis. Notably, M2 macrophages reciprocally foster the malignant behavior of MRTK tumor cells. This study unveils the pivotal role of EIF4EBP1 in propelling MRTK's malignant progression, unraveling a complex regulatory network involving EIF4EBP1 and TAMs. These findings underscore EIF4EBP1 as a promising biomarker and highlight its therapeutic potential in MRTK management.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas de Ciclo Celular , Macrófagos Asociados a Tumores , Humanos , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/inmunología , Línea Celular Tumoral , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias Renales/patología , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Proliferación Celular/genética , Microambiente Tumoral , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Pronóstico
2.
Cell Biol Int ; 48(8): 1069-1079, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38884348

RESUMEN

ErbB3-binding protein 1(Ebp1) has two isoforms, p42 Ebp1 and p48 Ebp1, both of which can regulate cell growth and differentiation. But these isoforms often have opposite effects, including contradictory roles in regulation of cell growth in different tissues and cells. P48 Ebp1 belongs to the full-length sequence, while conformational changes in the crystal structure of p42 Ebp1 reveals a lack of an α helix at the amino terminus. Due to the differences in the structures of these two isoforms, they have different binding partners and protein modifications. Ebp1 can function as both an oncogene and a tumor suppressor factor. However, the underlying mechanisms by which these two isoforms exert opposite functions are still not fully understood. In this review, we summarize the genes and the structures of protein of these two isoforms, protein modifications, binding partners and the association of different isoforms with diseases.


Asunto(s)
Isoformas de Proteínas , Humanos , Isoformas de Proteínas/metabolismo , Animales , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Neoplasias/metabolismo , Unión Proteica
3.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(3): 670-678, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-38926952

RESUMEN

OBJECTIVE: To investigate the clinical significance, functional role and potential downstream mechanism of USP5 in acute myeloid leukemia (AML). METHODS: The expression of USP5 in AML and normal tissues and its correlation with patients' survival were analyzed based on TCGA database. USP5 was knocked down and overexpressed in Jurkat and HL-60 cells using lentivirus. USP5 mRNA and protein expression were detected by RT-qPCR and Western blot, respectively. Cell proliferation and growth were measured by CCK-8 and methylcellulose colony-forming assay. Flow cytometry was used to analyze cell cycle and apoptosis. RESULTS: USP5 was highly expression in AML compared with normal tissues. Up-regulation of USP5 was negatively correlated with the survival of AML patients. USP5 knockdown and overexpression inhibited and promoted the proliferation and colony growth of AML cells, respectively. Cell cycle arrest and apoptosis were induced in USP5 knockdown Jurkat and HL-60 cells. Furthermore, USP5 knockdown inhibited the phosphrylation of AKT, mTOR and 4EBP1. CONCLUSION: Overexpression of USP5 predicts poor survival of AML patients. Targeting USP5 suppresses AKT/mTOR/4EBP1 signaling and reduces the proliferation and growth of AML cells.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Apoptosis , Proliferación Celular , Leucemia Mieloide Aguda , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , Humanos , Leucemia Mieloide Aguda/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Células HL-60 , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Células Jurkat , Proteasas Ubiquitina-Específicas/metabolismo , Relevancia Clínica
4.
Autophagy ; 20(9): 2017-2040, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38744665

RESUMEN

AMPK promotes catabolic and suppresses anabolic cell metabolism to promote cell survival during energetic stress, in part by inhibiting MTORC1, an anabolic kinase requiring sufficient levels of amino acids. We found that cells lacking AMPK displayed increased apoptotic cell death during nutrient stress caused by prolonged amino acid deprivation. We presumed that impaired macroautophagy/autophagy explained this phenotype, as a prevailing view posits that AMPK initiates autophagy (often a pro-survival response) through phosphorylation of ULK1. Unexpectedly, however, autophagy remained unimpaired in cells lacking AMPK, as monitored by several autophagic readouts in several cell lines. More surprisingly, the absence of AMPK increased ULK1 signaling and MAP1LC3B/LC3B lipidation during amino acid deprivation while AMPK-mediated phosphorylation of ULK1 S555 (a site proposed to initiate autophagy) decreased upon amino acid withdrawal or pharmacological MTORC1 inhibition. In addition, activation of AMPK with compound 991, glucose deprivation, or AICAR blunted autophagy induced by amino acid withdrawal. These results demonstrate that AMPK activation and glucose deprivation suppress autophagy. As AMPK controlled autophagy in an unexpected direction, we examined how AMPK controls MTORC1 signaling. Paradoxically, we observed impaired reactivation of MTORC1 in cells lacking AMPK upon prolonged amino acid deprivation. Together these results oppose established views that AMPK promotes autophagy and inhibits MTORC1 universally. Moreover, they reveal unexpected roles for AMPK in the suppression of autophagy and the support of MTORC1 signaling in the context of prolonged amino acid deprivation. These findings prompt a reevaluation of how AMPK and its control of autophagy and MTORC1 affect health and disease.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Aminoácidos , Autofagia , Diana Mecanicista del Complejo 1 de la Rapamicina , Transducción de Señal , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Autofagia/fisiología , Aminoácidos/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Humanos , Animales , Fosforilación , Ratones , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Glucosa/metabolismo , Apoptosis/efectos de los fármacos
5.
Int J Hematol ; 119(5): 541-551, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38530586

RESUMEN

This study investigated the effect of rapamycin alone and in combination with chemotherapy (doxorubicin and cytarabine) on AML. Human acute monocytic leukemia cell line SHI-1 and NPG AML model mice created by intravenous injection of SHI-1 cell were treated with rapamycin, chemotherapy, or rapamycin plus chemotherapy. Analysis by cell counting kit-8, western blot, flow cytometry, and immunohistochemistry was performed, and results suggested that both rapamycin and chemotherapy inhibited proliferation of SHI-1 cells both in vitro and in vivo, suppressed neoplasm growth in vivo, and promoted survival of NPG AML mice. The antitumor effect of rapamycin plus chemotherapy was better than that of rapamycin alone and chemotherapy alone. In addition, western blot results demonstrated that rapamycin inhibited the phosphorylation of mTOR downstream targets 4EBP1 and S6K1 in SHI-1 cells, and increased the pro-apoptosis-related protein Bax and autophagy-associated proteins Beclin-1, LC3B-II, and ATG5 while reducing the anti-apoptosis-related protein Bcl-2. In conclusion, the results of this study indicate that rapamycin acts synergistically with doxorubicin and cytarabine in AML treatment, and its underlying mechanism might be associated with mTORC1 pathway-mediated apoptosis and autophagy.


Asunto(s)
Apoptosis , Autofagia , Doxorrubicina , Diana Mecanicista del Complejo 1 de la Rapamicina , Transducción de Señal , Sirolimus , Animales , Autofagia/efectos de los fármacos , Apoptosis/efectos de los fármacos , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Sirolimus/farmacología , Línea Celular Tumoral , Doxorrubicina/farmacología , Transducción de Señal/efectos de los fármacos , Citarabina/farmacología , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Sinergismo Farmacológico , Ensayos Antitumor por Modelo de Xenoinjerto , Proliferación Celular/efectos de los fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico
6.
Autophagy ; 20(2): 365-379, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37712850

RESUMEN

Cerebral ischemia induces massive mitochondrial damage, leading to neuronal death. The elimination of damaged mitochondria via mitophagy is critical for neuroprotection. Here we show that the level of PA2G4/EBP1 (proliferation-associated 2G4) was notably increased early during transient middle cerebral artery occlusion and prevented neuronal death by eliciting cerebral ischemia-reperfusion (IR)-induced mitophagy. Neuron-specific knockout of Pa2g4 increased infarct volume and aggravated neuron loss with impaired mitophagy and was rescued by introduction of adeno-associated virus serotype 2 expressing PA2G4/EBP1. We determined that PA2G4/EBP1 is ubiquitinated on lysine 376 by PRKN/PARKIN on the damaged mitochondria and interacts with receptor protein SQSTM1/p62 for mitophagy induction. Thus, our study suggests that PA2G4/EBP1 ubiquitination following cerebral IR-injury promotes mitophagy induction, which may be implicated in neuroprotection.Abbreviations: AAV: adeno-associated virus; ACTB: actin beta; BNIP3L/NIX: BCL2 interacting protein 3 like; CA1: Cornu Ammonis 1; CASP3: caspase 3; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; DMSO: dimethyl sulfoxide; PA2G4/EBP1: proliferation-associated 2G4; FUNDC1: FUN14 domain containing 1; IB: immunoblotting; ICC: immunocytochemistry; IHC: immunohistochemistry; IP: immunoprecipitation; MCAO: middle cerebral artery occlusion; MEF: mouse embryonic fibroblast; OGD: oxygen-glucose deprivation; PRKN/PARKIN: parkin RBR E3 ubiquitin protein ligase; PINK1: PTEN induced kinase 1; RBFOX3/NeuN: RNA binding fox-1 homolog 3; SQSTM1/p62: sequestosome 1; TIMM23: translocase of inner mitochondrial membrane 23; TOMM20: translocase of outer mitochondrial membrane 20; TUBB: tubulin beta class I; WT: wild-type.


Asunto(s)
Isquemia Encefálica , Mitofagia , Animales , Ratones , Mitofagia/genética , Proteína Sequestosoma-1/metabolismo , Infarto de la Arteria Cerebral Media , Autofagia , Proteínas Quinasas/metabolismo , Fibroblastos/metabolismo , Ubiquitinación , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo
7.
Heliyon ; 9(8): e19154, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37664741

RESUMEN

Introduction: To investigate the inhibitory effect of sorafenib combined with PEGylated resveratrol on renal cell carcinoma (RCC) and its potential mechanism. Methods: MTT assay was used to detect the inhibitory effects of PEGylated resveratrol and sorafenib alone or combination on proliferation of RCC cells. Scratch and transwell assays were performed to examine the effects on the in vitro migration and invasion of RCC cells, respectively. The anti-tumor activity as well as splenic lymphocyte proliferation of the combination therapy was evaluated in the RCC xenograft mouse model. Western blotting method was used to detect changes in proteins involved in the antitumor efficacy related signaling pathways. Results: Inhibitory effects of PEGylated resveratrol combined with sorafenib incubation on the proliferation of Renca cells was synergistically enhanced compared with the mono-incubation group (both P < 0.01, CI < 1). Scratch and transwell assays revealed that combined incubation could significantly inhibit the migration and invasion of 786-O cells in vitro. Combined PEGylated resveratrol with sorafenib could significantly inhibit the growth of Renca renal carcinoma in mice with the tumor growth inhibition (TGI) of 85.5% and one achieved complete remission on D14, while the two monotherapies were both below 43% on D14, suggesting that current combination may have synergistic anti-renal carcinoma activity. Compared with the control group, PEGylated resveratrol combined with sorafenib in vivo promoted the proliferation of unactivated splenic lymphocytes and the proliferation of lymphocytes stimulated with concanavalin A and lipopolysaccharide. Western blotting results showed that combination therapy may suppress the growth of renal cell carcinoma by inhibiting AKT/mTOR/p70S6k-4EBP-1 and c-Raf7MEK/ERK signaling pathways. Conclusion: PEGylated resveratrol combined with sorafenib can achieve synergistic anti-RCC activity, and the mechanism may be related to the inhibition of Akt/mTOR/p70S6k-4EBP-1 and c-Raf7MEK/ERK signaling pathways.

8.
Open Biol ; 13(8): 230081, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37553074

RESUMEN

Preimplantation mouse embryo development involves temporal-spatial specification and segregation of three blastocyst cell lineages: trophectoderm, primitive endoderm and epiblast. Spatial separation of the outer-trophectoderm lineage from the two other inner-cell-mass (ICM) lineages starts with the 8- to 16-cell transition and concludes at the 32-cell stages. Accordingly, the ICM is derived from primary and secondary contributed cells; with debated relative EPI versus PrE potencies. We report generation of primary but not secondary ICM populations is highly dependent on temporal activation of mammalian target of Rapamycin (mTOR) during 8-cell stage M-phase entry, mediated via regulation of the 7-methylguanosine-cap (m7G-cap)-binding initiation complex (EIF4F) and linked to translation of mRNAs containing 5' UTR terminal oligopyrimidine (TOP-) sequence motifs, as knockdown of identified TOP-like motif transcripts impairs generation of primary ICM founders. However, mTOR inhibition-induced ICM cell number deficits in early blastocysts can be compensated by the late blastocyst stage, after inhibitor withdrawal; compensation likely initiated at the 32-cell stage when supernumerary outer cells exhibit molecular characteristics of inner cells. These data identify a novel mechanism specifically governing initial spatial segregation of mouse embryo blastomeres, that is distinct from those directing subsequent inner cell formation, contributing to germane segregation of late blastocyst lineages.


Asunto(s)
Blastocisto , Embrión de Mamíferos , Ratones , Animales , Diferenciación Celular/fisiología , Diana Mecanicista del Complejo 1 de la Rapamicina , Linaje de la Célula , Mamíferos
9.
Biology (Basel) ; 12(5)2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37237490

RESUMEN

mTOR is constitutively activated in acute myeloid leukemia (AML) cells, as indicated by the phosphorylation of its substrates, 4EBP1 and P70S6K. Here, we found that quercetin (Q) and rapamycin (Rap) inhibited P70S6K phosphorylation, partially dephosphorylated 4EBP1, and activated ERK1/2 in U937 and THP1, two leukemia cell lines. ERK1/2 inhibition by U0126 induced a stronger dephosphorylation of mTORC1 substrates and activated AKT. The concomitant inhibition of ERK1/2 and AKT further dephosphorylated 4EBP1 and further increased Q- or Rap-mediated cytotoxicity, compared to the single ERK1/2 or AKT inhibition in cells undergoing Q- or Rap-treatments. Moreover, quercetin or rapamycin reduced autophagy, particularly when used in combination with the ERK1/2 inhibitor, U0126. This effect was not dependent on TFEB localization in nuclei or cytoplasm or on the transcription of different autophagy genes, but did correlate with the reduction in protein translation due to a strong eIF2α-Ser51 phosphorylation. Thus, ERK1/2, by limiting 4EBP1 de-phosphorylation and eIF2α phosphorylation, behaves as a paladin of protein synthesis. Based on these findings, the combined inhibition of mTORC1, ERK1/2, and AKT should be considered in treatment of AML.

10.
PeerJ ; 11: e14863, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36908822

RESUMEN

Many cases of blindness are caused by age-related cataracts (ARCs). N6-methyladenosine (m6A)-modified circRNA widely participates in disease progression. However, the role of m6A modification of circRNA in ARC is unclear. We mined and elucidated the functions and mechanisms of key circRNAs with m6A modification involved in ARC progression. The GSE153722 dataset was used to mine m6A-mediated key circRNA. Loss-of-function assays and rescue assays were used to explore the effect and mechanism of circRNA on ARC cell proliferation and apoptosis. Has_circ_0007905 was a hypermethylated and upregulated expression in the ARC group relative to the control group both in vivo and in vitro. Silencing of has_circ_0007905 promoted proliferation and inhibited the apoptosis of HLE-B3 cells. METTL3 was upregulated in HLE-B3 cells after ARC modeling and had four binding sites with has_circ_0007905 and a mediated m6A modification of has_circ_0007905. Proliferation was significantly inhibited and apoptosis of HLE-B3 cells was facilitated by METTL3 overexpression, whereas these effects were prevented by has_circ_0007905 silencing. Silencing of has_circ_0007905 led to an alteration in the transcriptome landscape. Differentially expressed genes were mainly involved in immune-related processes and pathways. EIF4EBP1 overexpression promoted apoptosis and suppressed proliferation, and also significantly reversed effects of has_circ_0007905 silencing. Moreover, miR-6749-3p significantly decreased the luciferase activities of wild type plasmids with both of has_circ_0007905 and EIF4EBP1. MiR-6749-3p inhibitor blocked elevation in proliferation and reduced EIF4EBP1 expression and apoptosis conferred by has_circ_0007905 silencing. We reveal for the first time that the commitment of ARC progression is guided by METTL3/has_circ_0007905/miR-6749-3p/EIF4EBP1 axis, and the results provide new insights into ARC pathology.


Asunto(s)
MicroARNs , ARN Circular , Apoptosis , Adenosina , Sitios de Unión
11.
Bio Protoc ; 13(6): e4622, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36968436

RESUMEN

Polysome profiling by sucrose density gradient centrifugation is commonly used to study the overall degree of translation (messenger RNA to protein synthesis). Traditionally, the method begins with synthesis of a 5-10 mL sucrose gradient onto which 0.5-1 mL of cell extract is layered and centrifuged at high speed for 3-4 h in a floor-model ultracentrifuge. After centrifugation, the gradient solution is passed through an absorbance recorder to generate a polysome profile. Ten to twelve fractions (0.8-1 mL each) are collected for isolating different RNA and protein populations. The overall method is tedious and lengthy (6-9 h), requires access to a suitable ultracentrifuge rotor and centrifuge, and requires a substantial amount of tissue material, which can be a limiting factor. Moreover, there is often a dilemma over the quality of RNA and protein populations in the individual fractions due to the extended experiment times. To overcome these challenges, here we describe a miniature sucrose gradient for polysome profiling using Arabidopsis thaliana seedlings that takes ~1 h centrifugation time in a tabletop ultracentrifuge, reduced gradient synthesis time, and also less tissue material. The protocol described here can be easily adapted to a wide variety of organisms and polysome profiling of organelles, such as chloroplasts and mitochondria. Key Features • Mini sucrose gradient for polysome profiling that requires less than half the processing time vs. traditional methods. • Reduced starting tissue material and sample volume for sucrose gradients. • Feasibility of RNA and protein isolation from polysome fractions. • Protocol can be easily modified to a wide variety of organisms (and even polysome profiling of organelles, such as chloroplast and mitochondria). Graphical Overview.

12.
Pathol Res Pract ; 244: 154384, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36878109

RESUMEN

Sclerosing pneumocytoma (SP) is a rare benign epithelial tumor of the lung, and approximately 40 % of patients with SP present with AKT1 E17K mutation. SP cells comprise proliferated surface and round stromal cells. To elucidate the role of signal transductions and to identify the difference between surface and stromal cells, the current study aimed to investigate the activation of the Akt/mammalian target of rapamycin (mTOR)/4E-binding protein 1 signaling pathway in SP. METHODS: The molecular and pathological characteristics of SP in 12 patients were analyzed. AKT1 gene analysis revealed AKT1 E17K mutation in four cases. Immunohistochemical analysis revealed that tumor cells were cytoplasmic positive for pAkt, pmTOR, p4EBP1, and pS6RP. The surface cells had a significantly higher expression of pmTOR (p = 0.002) and a significantly lower expression of p4EBP1 (p = 0.017) than stromal cells. SP without AKT1 E17K mutation had a higher positive correlation with pacts, p4EBP1, pmTOR, and pS6RP expression than SP with AKT1 E17K mutation. These findings may be attributed to the aberrant activation of the Akt/mTOR pathway due to AKT1 E17K mutations. Hence, both surface and round stromal cells have tumorigenic characteristics, and differences in these characteristics may contribute to variations in tumor growth and the morphology and angiogenesis of SP.


Asunto(s)
Neoplasias Pulmonares , Sirolimus , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Serina-Treonina Quinasas TOR/metabolismo
13.
Artículo en Inglés | MEDLINE | ID: mdl-36691572

RESUMEN

Objective: To detect the activation of the EGFR and mTOR signaling pathways in the triple negative breast cancer cell line MDA-MB-468 and investigate the inhibitory effect of gefitinib, an epidermal growth factor receptor inhibitor, and everolimus, a target protein inhibitor of rapamycin, on triple negative breast cancer cells. Methods: Triple negative human breast cancer MDA-MB-468 cells were cultured and blank control group, single EGFR inhibitor gefitinib group, single mTOR inhibitor everolimus group, and two drug combination group were set up respectively to detect the effects of single and combined drugs on cell proliferation activity, cell cycle and apoptosis, and the expression of EGFR and mTOR signal pathway proteins in cell lines after single and combined drug intervention was detected again by Western blot. Results: The level of EGFR and p-mTOR protein in triple negative breast cancer was higher than in non triple negative breast cancer (P<0.05). The level of mTOR, S6K1, p-EGFR, p-S6K1 was significantly increased when treated with EGF (0ng/mL, 10ng/mL, 100ng/mL) for 1h, compared to without EGF stimulation (P<0.05). The level of p-EGFR, p-mTOR, p-S6K1 protein increased significantly when the cells were exposed to EGF for 2h, respectively (P<0.05). EGFR inhibitor gefitinib alone and the mTOR inhibitor everolimus alone could significantly inhibit the proliferation of human triple negative breast cancer MDA-MB-468 cells in a dose-dependent manner (P<0.05). The level of p-4EBP1 protein in EGFR and mTOR signal pathway was significantly increased after the intervention of gefitinib alone, everolimus alone, and the combination of two drugs (P<0.05). Conclusion: EGFR and mTOR signaling pathways can be activated in triple negative breast cancer; Both the EGFR inhibitor gefitinib alone and the mTOR inhibitor everolimus alone can significantly inhibit the proliferation of human triple negative breast cancer MDA-MB-468 cells. The combination of the EGFR inhibitor gefitinib and the mTOR inhibitor everolimus may achieve anti-tumor effect similar to that of single drug by reducing the drug dose.

14.
J Clin Endocrinol Metab ; 108(4): 876-887, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36273993

RESUMEN

CONTEXT: Invasive and somatostatin receptor ligand (SRL)-resistant pituitary tumors represent a challenge in the clinical practice of endocrinologists. Efforts have been made to elucidate reliable makers for both. Survivin and eukaryotic translation initiation factor-binding protein 1 (4EBP1) are upregulated in several cancers and involved in apoptosis and cell proliferation. OBJECTIVE: We explored the role of these markers in somatotropinomas. METHODS: Immunostains for survivin and 4EBP1, and also for somatostatin receptor type 2 (SSTR2), Ki-67, and cytokeratin 18, were analyzed in tissue microarrays containing 52 somatotropinoma samples. Tumor invasiveness was evaluated in all samples while drug resistance was evaluated in 34 patients who received SRL treatment. All these parameters were correlated with first-generation SRL (fg-SRL) responsiveness and tumor invasiveness. RESULTS: Low survivin expression (P = 0.04), hyperintense signal on T2 weighted image (T2WI) (P = 0.01), younger age (P = 0.01), sparsely granular adenomas (SGA) (P = 0.04), high postoperative growth hormone (GH) and insulin-like growth factor-1 (IGF-1) levels (P = 0.049 and P < 0.001, respectively), and large postoperative tumor size (P = 0.02) were associated with resistance to fg-SRL. Low survivin and SSTR2 expression and high 4EBP1 expression were associated with SGA (P = 0.04, P = 0.01, and P = 0.001, respectively). Younger age (P = 0.03), large tumor pre- and postoperative (P = 0.04 and P = 0.006, respectively), low SSTR2 expression (P = 0.03), and high baseline GH and IGF-1 (P = 0.01 and P = 0.02, respectively) were associated with tumor invasiveness. However, survivin, 4EBP1, Ki-67, and granulation patterns were not associated with tumor invasion. CONCLUSION: This study suggests that low survivin expression is predictive of resistance to fg-SRL in somatotropinomas, but not of tumor invasiveness.


Asunto(s)
Acromegalia , Adenoma , Hormona de Crecimiento Humana , Neoplasias Hipofisarias , Humanos , Receptores de Somatostatina/metabolismo , Somatostatina/uso terapéutico , Factor I del Crecimiento Similar a la Insulina , Acromegalia/tratamiento farmacológico , Survivin/uso terapéutico , Antígeno Ki-67 , Adenoma/metabolismo , Hormona de Crecimiento Humana/uso terapéutico , Neoplasias Hipofisarias/tratamiento farmacológico , Hormona del Crecimiento/uso terapéutico
15.
Int J Mol Sci ; 23(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36555660

RESUMEN

Protein synthesis is tightly regulated by both gene-specific and global mechanisms to match the metabolic and proliferative demands of the cell. While the regulation of global protein synthesis in response to mitogen or stress signals is relatively well understood in multiple experimental systems, how different cell types fine-tune their basal protein synthesis rate is not known. In a previous study, we showed that resting B and T lymphocytes exhibit dramatic differences in their metabolic profile, with implications for their post-activation function. Here, we show that resting B cells, despite being quiescent, exhibit increased protein synthesis in vivo as well as ex vivo. The increased protein synthesis in B cells is driven by mTORC1, which exhibits an intermediate level of activation in these cells when compared with resting T cells and activated B cells. A comparative analysis of the transcriptome and translatome of these cells indicates that the genes encoding the MHC Class II molecules and their chaperone CD74 are highly translated in B cells. These data suggest that the translatome of B cells shows enrichment for genes associated with antigen processing and presentation. Even though the B cells exhibit higher mTORC1 levels, they prevent the translational activation of TOP mRNAs, which are mostly constituted by ribosomal proteins and other translation factors, by upregulating 4EBP1 levels. This mechanism may keep the protein synthesis machinery under check while enabling higher levels of translation in B cells.


Asunto(s)
Biosíntesis de Proteínas , Proteínas Ribosómicas , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas Ribosómicas/metabolismo , Linfocitos T , Linfocitos B
16.
J Fungi (Basel) ; 8(10)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36294635

RESUMEN

Fusarium keratoplasticum is the Fusarium species most commonly associated with human infections (fusariosis). Antifungal treatment of fusariosis is often hampered by limited treatment options due to resistance towards azole antifungals. The mechanisms of antifungal resistance and sterol biosynthesis in fusaria are poorly understood. Therefore, in this study we assessed the transcriptional response of F. keratoplasticum when exposed to voriconazole. Our results revealed a group of dramatically upregulated ergosterol biosynthesis gene duplicates, most notably erg6A (912-fold), cyp51A (52-fold) and ebp1 (20-fold), which are likely part of an alternative ergosterol biosynthesis salvage pathway. The presence of human cholesterol biosynthesis gene homologs in F. keratoplasticum (ebp1, dhcr7 and dhcr24_1, dhcr24_2 and dhcr24_3) suggests that additional sterol biosynthesis pathways may be induced in fusaria under other growth conditions or during host invasion. Voriconazole also induced the expression of a number of ABC efflux pumps. Further investigations suggested that the highly conserved master regulator of ergosterol biosynthesis, FkSR, and the pleiotropic drug resistance network that induces zinc-cluster transcription factor FkAtrR coordinate the response of FSSC species to azole antifungal exposure. In-depth genome mining also helped clarify the ergosterol biosynthesis pathways of moulds and provided a better understanding of antifungal drug resistance mechanisms in fusaria.

17.
Cancer Cell Int ; 22(1): 204, 2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35642054

RESUMEN

BACKGROUND: Triple negative breast cancer (TNBC) is an aggressive subtype of breast cancer characterized by the lack of estrogen receptor, progesterone receptor, and HER2. Our lab previously characterized miR-3189-3p as a microRNA with potent anti-cancer activity against glioblastoma. Here, we hypothesized a similar activity in TNBC cells. As miR-3189-3p is predicted to target a variety of RNA binding proteins, we further hypothesized an inhibitory effect of this miRNA on protein synthesis. METHODS: MDA-MB-231 and MDA-MB-468 cells were used to investigate the effect of miR-3189-3p on cell proliferation, migration, and invasion. TGCA database was used to analyze the expression of miR-3189-3p, c-MYC, 4EPB1, and eIF4E in breast cancer. Western blotting and RT-qPCR assays were used to assess the expression of selected proteins and RNAs after transfections. RESULTS: Although c-MYC is not a predicted gene target for miR-3189-3p, we discovered that c-MYC protein is downregulated in miRNA-treated TNBC cells. We found that the downregulation of c-MYC by miR-3189-3p occurs in both normal growth conditions and in the absence of serum. The mechanism involved the direct inhibition of eIF4EBP1 by miR-3189-3p. Additionally, we found that miR-3189-3p could negatively affect cap-independent translation mediated by internal ribosome entry sites (IRES) or by m6A. Finally, miR-3189-3p sensitized TNBC cells to doxorubicin. CONCLUSION: Overall, results indicated that miR-3189-3p exerts its anti-tumor activity through targeting translational regulatory proteins leading to an impairment in c-MYC translation, and possibly other oncogenic factors, suggesting that miR-3189-3p, alone or in combination, could be a valuable therapeutic approach against a malignancy with few treatment options.

18.
Int J Mol Sci ; 23(12)2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35743211

RESUMEN

PEL is a rare B cell lymphoma associated with KSHV that mainly arises in immune-deficient individuals. The search for new drugs to treat this cancer is still ongoing given its aggressiveness and the poor response to chemotherapies. In this study, we found that DMF, a drug known for its anti-inflammatory properties which is registered for the treatment of psoriasis and relapsing-remitting MS, could be a promising therapeutic strategy against PEL. Indeed, although some mechanisms of resistance were induced, DMF activated NRF2, reduced ROS and inhibited the phosphorylation of STAT3 and the release of the pro-inflammatory and immune suppressive cytokines IL-6 and IL-10, which are known to sustain PEL survival. Interestingly, we observed that DMF displayed a stronger cytotoxic effect against fresh PEL cells in comparison to PEL cell lines, due to the activation of ERK1/2 and autophagy in the latter cells. This finding further encourages the possibility of using DMF for the treatment of PEL.


Asunto(s)
Herpesvirus Humano 8 , Linfoma de Efusión Primaria , Apoptosis , Línea Celular Tumoral , Dimetilfumarato/farmacología , Dimetilfumarato/uso terapéutico , Humanos , Linfoma de Efusión Primaria/tratamiento farmacológico , Recurrencia Local de Neoplasia
19.
Cell Oncol (Dordr) ; 45(3): 355-365, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35579750

RESUMEN

PURPOSE: N6-methyladenosine (m6A), the most prevalent mRNA modification, plays an essential role in tumorigenesis. Notably, increasing interest has been directed to bioactive peptides (BPs) with antitumor activities. Here, we set out to investigate the potential of the BP-regulated ALKBH5/MLST8/EIF4EBP1 axis on prevention and treatment of acute myeloid leukemia (AML). METHODS: The biological effects of BP on AML cells were detected by MTT and ApoLive-Glo™ multiplex assays. The role of BP in tumor growth was determined by a subcutaneous xenograft model. The ALKBH5/MLST8/EIF4EBP1 axis was identified as a potential BP target in AML via methylated RNA immunoprecipitation sequencing (MeRIP-seq) combined with RNA sequencing (RNA-seq). Western blot, RT-qPCR, MeRIP-qPCR, dual-luciferase reporter and RNA stability assays were performed to validate the function and mode of action of the BP-regulated ALKBH5/MLST8/EIF4EBP1 axis. The clinical relevance of the BP-regulated ALKBH5/MLST8/EIF4EBP1 axis in AML was confirmed by TCGA data analysis. RESULTS: We found that BP can inhibit AML cell proliferation and promote apoptosis in vitro, and repress AML tumor growth in vivo. Mechanistically, we found that BP downregulated ALKBH5 expression, which in turn repressed m6A demethylation of MLST8 and EIF4EBP1 mRNAs. Reduction of the m6A levels of MLST8 and EIF4EBP1 facilitated MLST8 and EIF4EBP1 mRNA decay, resulting in inhibition of AML cell proliferation. Furthermore, we found that the BP-regulated ALKBH5/MLST8/EIF4EBP1 axis closely correlates with AML patient prognosis. CONCLUSIONS: Our data indicate that BP can inhibit acute myeloid leukemia cell proliferation by downregulating ALKBH5-mediated m6A demethylation of EIF4EBP1 and MLST8 mRNAs, which may have potential to prevent and treat this disease.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Desmetilasa de ARN, Homólogo 5 de AlkB , Proteínas de Ciclo Celular , Leucemia Mieloide Aguda , Péptidos , Homóloga LST8 de la Proteína Asociada al mTOR , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Desmetilación/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Péptidos/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Homóloga LST8 de la Proteína Asociada al mTOR/genética , Homóloga LST8 de la Proteína Asociada al mTOR/metabolismo
20.
Cancers (Basel) ; 14(10)2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35626002

RESUMEN

The eIF4E translation initiation factor has oncogenic properties and concordantly, the inhibitory eIF4E-binding protein (4EBP1) is considered a tumor suppressor. The exact molecular effects of 4EBP1 activation in cancer are still unknown. Surprisingly, 4EBP1 is a target of genomic copy number gains (Chr. 8p11) in breast and lung cancer. We noticed that 4EBP1 gains are genetically linked to gains in neighboring genes, including WHSC1L1 and FGFR1. Our results show that FGFR1 gains act to attenuate the function of 4EBP1 via PI3K-mediated phosphorylation at Thr37/46, Ser65, and Thr70 sites. This implies that not 4EBP1 but instead FGFR1 is the genetic target of Chr. 8p11 gains in breast and lung cancer. Accordingly, these tumors show increased sensitivity to FGFR1 and PI3K inhibition, and this is a therapeutic vulnerability through restoring the tumor-suppressive function of 4EBP1. Ribosome profiling reveals genes involved in insulin signaling, glucose metabolism, and the inositol pathway to be the relevant translational targets of 4EBP1. These mRNAs are among the top 200 translation targets and are highly enriched for structure and sequence motifs in their 5'UTR, which depends on the 4EBP1-EIF4E activity. In summary, we identified the translational targets of 4EBP1-EIF4E that facilitate the tumor suppressor function of 4EBP1 in cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA