Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 867: 161498, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36638703

RESUMEN

The environmental occurrences of bisphenol analogues (BPs) have been extensively reported, whereas their concentration profile, spatial distribution, and temporal trend in e-waste dismantling area are still poorly understood. Herein, typical BPs (BPA, BPS, TBBPA, TBBPA-DHEE, and TBBPA-MHEE) were investigated in water, soil, and biological samples from three representative regions (FJT, JJP, and RIB) in e-waste recycling area in Taizhou, Zhejiang Province. Overall, the detection frequency of BPs in all samples was 100 %, confirming widespread presence of BPs in e-waste recycling area. Wherein, BPA was the predominant BPs in water (33.3 %) and soil samples (34.9 %), but TBBPA accounted for the largest proportion (41.3 %) in biological samples. In addition, the concentration of BPs in FJT was lower than that in JJP and RIB owing to the renovations on FJT by the local government in recent years, whereas the higher BPs level in RIB implied that elevated BPs contents was related to massive e-waste dismantling activities. From 2017 to 2021, a decreased trend of BPs concentration was observed in FJT, but aggravation of BPs levels in RIB was caused by the ongoing e-waste dismantling. The risk assessment revealed that the BPs in e-waste recycling area posed a low ecological and human health risk. Our finding could provide a valuable reference for the development of strict legislation systems related to e-waste management in China.


Asunto(s)
Residuos Electrónicos , Humanos , Suelo , Compuestos de Bencidrilo/análisis , Medición de Riesgo , China , Agua , Monitoreo del Ambiente
2.
Toxics ; 11(1)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36668783

RESUMEN

Novel brominated flame retardants (NBFRs) have been widely used as alternatives to legacy BFRs. However, information on the contamination status and human exposure risks of electronic waste (e-waste)-derived NBFRs in the e-waste workplace is limited. In this study, six NBFRs and the legacy BFRs, hexabromocyclododecanes (HBCDs), were analyzed in 50 dust samples from an e-waste-dismantling workplace in Central China. The dust concentration of NBFRs in e-waste-dismantling workshops (median, 157−169 ng/g) was found to be significantly higher than those in an outdoor environment (17.3 ng/g) (p < 0.01). Differently, the highest median concentration of HBCDs was found in dust from the dismantling workshop for cellphones and computers (367 ng/g) among studied areas. The bis(2-ethylhexyl)-3,4,5,6-tetrabromo-phthalate (BEHTBP) was the predominant compound, which contributed 66.0−88.0% of measured NBFR concentrations. NBFRs might originate from plastic and rubber materials in wastes based on the correlation and principal component analysis. Moreover, the total estimated daily intakes (average scenario) of NBFRs were calculated at 2.64 × 10−2 ng/kg bw/d and 2.91× 10−2 ng/kg bw/d for the male and female dismantling workers, respectively, via dust ingestion, inhalation, and dermal contact pathways, which were lower than the reference dose values, and thus indicated a limited human exposure risk for NBFRs at the current level. Although the dust concentrations and daily intakes of NBFRs were still lower than those of other emerging pollutants (e.g., organophosphate and nitrogenous flame retardants) measured in the same sampling set, the elevated levels of NBFRs suggested the progressive BFR replacement process in China, which deserves more attention regarding their adverse effects on both the environment and human health.

3.
Environ Int ; 124: 1-9, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30639902

RESUMEN

Phthalate esters (PAEs) can be released into the environment during the dismantling of electronic waste (e-waste), but urinary levels of PAE metabolites (mPAEs) in humans living in e-waste sites have not been documented. In this study, 11 mPAEs were determined in urine samples collected from participants living in e-waste dismantling sites and a reference area in Southern China. The total urinary concentrations of the 11 mPAEs (∑mPAEs) in the e-waste sites (range: 11.1 ng/mL to 3380 ng/mL) were dominated by mono-(2-isobutyl) phthalate and mono-n-butyl phthalate. Participants living in the e-waste sites had significantly higher (p < 0.05) urinary concentrations of ∑mPAEs (and 5 individual mPAEs) than those in the reference area. Hence, e-waste dismantling activities contributed to human exposure to PAEs. The exposure doses of di-n-butyl phthalate, di(2-ethylhexyl)phthalate, di-iso-butyl phthalate, dimethyl phthalate, and diethyl phthalate were 3.41, 3.04, 1.37, 0.25, and 0.20 µg/kg bw/day, respectively. Furthermore, the health risk assessment in terms of hazard quotient and hazard index showed that approximately 22% of the participants living in the e-waste sites had HI values exceeding 1; importantly, 68% of them were non-adults (i.e., 0-18 years old). In the e-waste sites, 8 of the 11 mPAEs in urine samples had significantly positively associations (r = 0.185-0.358, p < 0.05) with the urinary concentration of 8-hydroxy-2'-deoxyguanosine, a marker of DNA oxidative stress. Therefore, people living in e-waste dismantling areas may have a potential health risk caused by PAE exposure. To the best of our knowledge, this study is the first to measure urinary mPAE levels in people living in e-waste dismantling areas.


Asunto(s)
Residuos Electrónicos , Exposición a Riesgos Ambientales , Contaminantes Ambientales/orina , Ácidos Ftálicos/orina , Eliminación de Residuos/métodos , Biomarcadores/orina , China , Contaminantes Ambientales/toxicidad , Ésteres , Humanos , Estrés Oxidativo , Ácidos Ftálicos/toxicidad
4.
Ecotoxicol Environ Saf ; 169: 707-713, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30502520

RESUMEN

Electronic waste or e-waste dismantling activities are known to release metals. However, the human exposure pathways of metals, and their association with oxidative stress in e-waste dismantling areas (EDAs) remain unclear. In this study, our results revealed elevated geometric mean concentrations in vegetables (Cd 0.096 and Pb 0.35 µg/g fw), rice (Cd 0.15, Pb 0.20, and 12.3 µg/g fw), hen eggs (Cd 0.006 and Pb 0.071 µg/g fw), and human urine (Cd 2.12, Pb 4.98, Cu 22.2, and Sb 0.20 ng/mL). Our calculations indicate that rice consumption source accounted for the overwhelming proportion of daily intakes (DIs) of Cd (61-64%), Cu (85-89%), and Zn (75-80%) in children and adults living in EDA; vegetables were the primary contributors to the DIs of Cd (30-32%); and rice (20-29%), vegetables (28-38%), and dust ingestion (26-45%) were all important exposure sources of Pb. Risk assessment predicted that DIs of Cd, Pb, Cu, and Zn via food consumption poses health risks to local residents of EDAs, and the urinary concentrations of analyzed metals were significantly (Pearson correlation coefficient: r = 0.324-0.710; p < 0.01) associated with elevated 8-OHdG, a biomarker of oxidative stress in humans.


Asunto(s)
Agua Potable/química , Residuos Electrónicos/análisis , Contaminación de Alimentos/análisis , Metales Pesados/orina , Contaminantes del Suelo/análisis , Adulto , Animales , Pollos , Niño , China , Polvo/análisis , Grano Comestible/química , Huevos/análisis , Femenino , Humanos , Oryza/química , Medición de Riesgo , Verduras/química
5.
Sci Total Environ ; 649: 821-828, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30179813

RESUMEN

To investigate the spatial distributions, potential transport and ecological risks of chlorinated paraffins (CPs) in and around e-waste dismantling area, we collected soil samples within 5 km of the e-waste dismantling centers and sediment samples in the surrounding area from the lower reaches of Jiaojiang River. Short- and medium-chain chlorinated paraffins (SCCPs and MCCPs) were analyzed by two-dimensional gas chromatography coupled with electron-capture negative-ionization mass spectrometry (GC × GC-ECNI-MS). The SCCP and MCCP concentration ranges in soils were 68.5 to 2.20 × 105 ng/g dry weight (dw) and 507 to 4.40 × 106 ng/g dw, respectively. The ranges for the levels of SCCPs and MCCPs in sediments were 32.5-1.29 × 104 ng/g dw and 271-2.72 × 104 ng/g dw, respectively. No significant correlation was observed between total organic carbon (TOC) and CP concentrations (P > 0.05). The spatial distributions showed that the CP levels were closely related to e-waste pollution. Correspondence analysis revealed that shorter-chain and less chlorinated congeners were enriched in sediments from sites distant from e-waste pollution source, while longer-chain and higher chlorinated congeners were concentrated in soils and sediments collected near the pollution source, which indicated that complex environmental processes, such as transportation via atmosphere and/or water, and deposition, resulted in different CP profiles in different sampling locations and environment matrixes (e.g., soil and sediments). Principal component analysis (PCA) indicated that e-waste pollution could be the same source of SCCPs and MCCPs. The preliminary risk assessment indicated that CPs in soils within 1 km of e-waste dismantling centers at current levels posed a considerable risk to soil-dwelling organisms, and the sediment MCCPs in Jiaojiang estuary at present levels also posed a risk to sediment-dwelling organisms.

6.
Environ Pollut ; 220(Pt A): 608-615, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27751635

RESUMEN

Short-chain chlorinated paraffins (SCCPs) in multi-environmental matrices are studied in Taizhou, Zhejiang Province, China, which is a notorious e-waste dismantling area. The investigated matrices consist of paddy field soil, paddy seeds (Oryza sativa, separated into hulls and rice unpolished) and apple snails (Ampullariidae, inhabiting the paddy fields). The sampling area covered a 65-km radius around the contamination center. C10 and C11 are the two predominant homologue groups in the area, accounting for about 35.7% and 33.0% of total SCCPs, respectively. SCCPs in snails and hulls are generally higher than in soil samples (30.4-530 ng/g dw), and SCCPs in hulls are approximate five times higher than in corresponding rice samples (4.90-55.1 ng/g dw). Homologue pattern analysis indicates that paddy seeds (both hull and rice) tend to accumulate relatively high volatile SCCP homologues, especially the ones with shorter carbon chain length, while snails tend to accumulate relatively high lipophilic homologues, especially the ones with more substituted chlorines. SCCPs in both paddy seeds and snails are linearly related to those in the soil. The e-waste dismantling area, which covers a radius of approximate 20 km, shows higher pollution levels for SCCPs according to their spatial distribution in four matrices. The preliminary assessment indicates that SCCP levels in local soils pose no significant ecological risk for soil dwelling organisms, but higher risks from dietary exposure of SCCPs are suspected for people living in e-waste dismantling area.


Asunto(s)
Residuos Electrónicos/análisis , Monitoreo del Ambiente , Hidrocarburos Clorados/análisis , Oryza/química , Parafina/análisis , Semillas/química , Caracoles/química , Suelo/química , Animales , China , Residuos Electrónicos/efectos adversos , Humanos , Hidrocarburos Clorados/efectos adversos , Hidrocarburos Clorados/química , Parafina/efectos adversos , Parafina/química , Análisis de Componente Principal , Medición de Riesgo , Contaminantes del Suelo/efectos adversos , Contaminantes del Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA