Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros











Intervalo de año de publicación
1.
Eur J Protistol ; 94: 126085, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703600

RESUMEN

Tetrahymena thermophila is an alternative organism for recombinant protein production. However, the production efficiency in T. thermophila is quite low mainly due to the rich cysteine proteases. In this study, we studied whether supplementation of the E-64 inhibitor to T. thermophila cultures increases the recombinant protein production efficiency without any toxic side effects. Our study showed that supplementation of E-64 had no lethal effects on T. thermophila cells in flask culture at 30 °C and 38 °C. In vitro protease activity analysis using secretome as protease enzyme source from E-64-supplemented cell cultures showed a reduced protein substrate degradation using bovine serum albumin, rituximab, and milk lactoglobulin proteins. E-64 also prevented proteolysis of the recombinantly produced and secreted TtmCherry2-sfGFP fusion protein at some level. This reduced inhibitory effect of E-64 could be due to genetic compensation of the inhibited proteases. As a result, the 5 µM concentration of E-64 was found to be a non-toxic protease inhibitory supplement to improve extracellular recombinant protein production efficiency in T. thermophila. This study suggests that the use of E-64 may increase the efficiency of extracellular recombinant protein production by continuously reducing extracellular cysteine protease activity during cultivation.


Asunto(s)
Inhibidores de Cisteína Proteinasa , Proteínas Recombinantes , Tetrahymena thermophila , Inhibidores de Cisteína Proteinasa/farmacología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tetrahymena thermophila/genética , Tetrahymena thermophila/efectos de los fármacos , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Leucina/análogos & derivados
2.
Int Immunopharmacol ; 129: 111594, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38295547

RESUMEN

BACKGROUND: Cathepsins have been recently identified as a regulator in the activation of Th1 and Th17 cells, which play an important role in the pathogenesis of anti-glomerular basement membrane (GBM) disease. Whether cathepsins contribute to the development of anti-GBM disease through regulating the activation of CD4+ T cell is still unclear. METHODS: Rats with experimental anti-GBM disease was established by immunization with the nephritogenic T cell epitope α3127-148. E64d, a cysteine cathepsin inhibitor, was administered in vitro and vivo to evaluate the effect of cathepsins on regulating the activation of antigen specific T cells and the development of anti-GBM disease. RESULTS: In rats with experimental anti-GBM diseases, E64d treatment not only reduced the levels of proteinuria, serum creatinine and anti-GBM antibody, but also ameliorated the kidney injury with less glomerular IgG deposition, a lower percentage of crescents and less infiltration of CD4+ T cells, CD8+ T cells and macrophages, as well as a lower percentage of splenic Th1 cells. In vitro, E64d treatment could significantly reduce the production of IFN-γ in the supernatant which might be produced by the activation of Th1 cells after being recalled with the autoantigen α3127-148. We also found the CD4+ T cells of rats with anti-GBM disease had an increased expression of cathepsin L (Cts-L), and the percentage of CD4+ T cells with extracellular expression of Cts-L was obviously higher, indicating it as a potential key regulator. CONCLUSIONS: E64d might attenuate the development of anti-GBM disease by participating in the activation of Th1 cells, indicating it as a potential drug for anti-GBM disease in the future.


Asunto(s)
Enfermedad por Anticuerpos Antimembrana Basal Glomerular , Leucina/análogos & derivados , Ratas , Animales , Enfermedad por Anticuerpos Antimembrana Basal Glomerular/tratamiento farmacológico , Enfermedad por Anticuerpos Antimembrana Basal Glomerular/patología , Células TH1/patología , Linfocitos T CD8-positivos , Autoantígenos , Catepsinas , Membrana Basal/patología
3.
ChemMedChem ; 18(18): e202300218, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37424408

RESUMEN

The zymogens of the neutrophil serine proteases elastase, proteinase 3, and cathepsin G are converted proteolytically into their pro-inflammatory active forms by the action of cathepsin C. The inhibition of this cysteine protease therefore is an interesting therapeutic approach for the treatment of inflammatory disorders with a high neutrophil burden such as COPD. Based on E-64c-hydrazide as lead structure, we have recently developed a covalently acting cathepsin C inhibitor using a n-butyl residue attached at the amine nitrogen of the hydrazide moiety to efficiently address the deep hydrophobic S2 pocket. To further optimize the affinity and selectivity profile of this inhibitor, the S1'-S2' area was now investigated by a combinatorial approach, showing that Nle-tryptamide is a ligand superior to the initially used Leu-isoamylamide. Using the neutrophil precursor line U937 as a cell culture model, this optimized inhibitor blocks the intracellular cathepsin C activity and thereby suppresses the activation of neutrophil elastase.


Asunto(s)
Catepsina C , Hidrazinas , Catepsina C/metabolismo , Hidrazinas/farmacología , Elastasa de Leucocito/metabolismo , Serina Proteasas , Leucina
4.
Int J Mol Sci ; 24(11)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37298246

RESUMEN

In the thyroid gland, cysteine cathepsins are secreted upon thyrotropin stimulation for thyroglobulin processing, and they are present at the primary cilia of thyroid epithelial cells. Treatment with protease inhibitors resulted in the loss of cilia from rodent thyrocytes and caused redistribution of the thyroid co-regulating G protein-coupled receptor Taar1 to the endoplasmic reticulum. These findings suggest that ciliary cysteine cathepsins are important to maintain sensory and signaling properties for the proper regulation and homeostasis of thyroid follicles. Therefore, it is important to better understand how cilia structure and frequencies are maintained in human thyroid epithelial cells. Hence, we aimed to investigate the potential role of cysteine cathepsins for the maintenance of primary cilia in the normal human Nthy-ori 3-1 thyroid cell line. This was approached by determining cilia lengths and frequencies in cysteine peptidase inhibition conditions in Nthy-ori 3-1 cell cultures. Cilia lengths were shortened upon 5 h of cysteine peptidase inhibition with cell-impermeable E64. Likewise, cilia lengths and frequencies were decreased upon additional overnight treatment with the cysteine peptidase-targeting, activity-based probe DCG-04. The results suggest that cysteine cathepsin activity is required for the maintenance of the cellular protrusions not only in rodents, but also in human thyrocytes. Hence, thyrotropin stimulation was used to simulate physiological conditions that eventually lead to cathepsin-mediated thyroglobulin proteolysis, which is initiated in the thyroid follicle lumen. Immunoblotting revealed that thyrotropin stimulation conditions result in the secretion of little procathepsin L and some pro- and mature cathepsin S but no cathepsin B from the human Nthy-ori 3-1 cells. Unexpectedly, however, 24 h incubation periods with thyrotropin shortened the cilia although higher amounts of cysteine cathepsins were present in the conditioned media. These data point to the necessity of further studies to delineate which of the cysteine cathepsins plays the most prominent role in cilia shortening and/or elongation. Collectively, the results of our study provide corroboration for the hypothesis of thyroid autoregulation by local mechanisms that our group previously proposed.


Asunto(s)
Tiroglobulina , Tirotropina , Humanos , Tiroglobulina/metabolismo , Tirotropina/farmacología , Tirotropina/metabolismo , Cilios/metabolismo , Cisteína/metabolismo , Glándula Tiroides/metabolismo
5.
Autophagy ; 19(9): 2558-2574, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37249424

RESUMEN

Antimicrobial acroautophagy/autophagy plays a vital role in degrading intracellular pathogens or microbial molecules in host-microbe interactions. However, microbes evolved various mechanisms to hijack or modulate autophagy to escape elimination. Vector-transmitted phloem-limited bacteria, Candidatus Liberibacter (Ca. Liberibacter) species, cause Huanglongbing (HLB), one of the most catastrophic citrus diseases worldwide, yet contributions of autophagy to HLB disease proliferation remain poorly defined. Here, we report the identification of a virulence effector in "Ca. Liberibacter asiaticus" (Las), SDE3, which is highly conserved among the "Ca. Liberibacter". SDE3 expression not only promotes the disease development of HLB and canker in sweet orange (Citrus sinensis) plants but also facilitates Phytophthora and viral infections in Arabidopsis, and Nicotiana benthamiana (N. benthamiana). SDE3 directly associates with citrus cytosolic glyceraldehyde-3-phosphate dehydrogenases (CsGAPCs), which negatively regulates plant immunity. Overexpression of CsGAPCs and SDE3 significantly inhibits autophagy in citrus, Arabidopsis, and N. benthamiana. Intriguingly, SDE3 undermines autophagy-mediated immunity by the specific degradation of CsATG8 family proteins in a CsGAPC1-dependent manner. CsATG8 degradation is largely rescued by treatment with an inhibitor of the late autophagic pathway, E64d. Furthermore, ectopic expression of CsATG8s enhances Phytophthora resistance. Collectively, these results suggest that SDE3-CsGAPC interactions modulate CsATG8-mediated autophagy to enhance Las progression in citrus.Abbreviations: ACP: asian citrus psyllid; ACD2: ACCELERATED CELL DEATH 2; ATG: autophagy related; Ca. Liberibacter: Candidatus Liberibacter; CaMV: cauliflower mosaic virus; CMV: cucumber mosaic virus; Cs: Citrus sinensis; EV: empty vector; GAPC: cytosolic glyceraldehyde-3-phosphate dehydrogenase; HLB: huanglongbing; H2O2: hydrogen peroxide; Las: liberibacter asiaticus; Laf: liberibacter africanus; Lam: liberibacter americanus; Pst: Pseudomonas syringae pv. tomato; PVX: potato virus X; ROS: reactive oxygen species; SDE3: sec-delivered effector 3; TEM: transmission electron microscopy; VIVE : virus-induced virulence effector; WT: wild-type; Xcc: Xanthomonas citri subsp. citri.


Asunto(s)
Arabidopsis , Citrus , Hemípteros , Rhizobiaceae , Animales , Citrus/microbiología , Liberibacter , Peróxido de Hidrógeno , Hemípteros/fisiología , Autofagia , Enfermedades de las Plantas/microbiología
6.
Molecules ; 28(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36771101

RESUMEN

Identification of novel drugs for anti-African swine fever (ASF) applications is of utmost urgency, as it negatively affects pig farming and no effective vaccine or treatment is currently available. African swine fever virus (ASFV) encoded pS273R is a cysteine protease that plays an important role in virus replication. E64, acting as an inhibitor of cysteine protease, has been established as exerting an inhibitory effect on pS273R. In order to obtain a better understanding of the interaction between E64 and pS273R, common docking, restriction docking, and covalent docking were employed to analyze the optimal bonding position between pS273R-E64 and its bonding strength. Additionally, three sets of 100 ns molecular dynamics simulations were conducted to examine the conformational dynamics of pS273R and the dynamic interaction of pS273R-E64, based on a variety of analytical methods including root mean square deviation (RMSD), root mean square fluctuation (RMSF), free energy of ligand (FEL), principal component analysis (PCA), and molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) analysis. The results show that E64 and pS273R exhibited close binding degrees at the activity center of ASFV pS273R protease. The data of these simulations indicate that binding of E64 to pS273R results in a reduction in flexibility, particularly in the ARM region, and a change in the conformational space of pS273R. Additionally, the ability of E64 to interact with polar amino acids such as ASN158, SER192, and GLN229, as well as charged amino acids such as LYS167 and HIS168, seems to be an important factor in its inhibitory effect. Finally, Octet biostratigraphy confirmed the binding of E64 and pS273R with a KD value of 903 uM. Overall, these findings could potentially be utilized in the development of novel inhibitors of pS273R to address the challenges posed by ASFV.


Asunto(s)
Virus de la Fiebre Porcina Africana , Proteasas de Cisteína , Porcinos , Animales , Simulación de Dinámica Molecular , Endopeptidasas/metabolismo , Aminoácidos/metabolismo , Proteasas de Cisteína/metabolismo
7.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36674454

RESUMEN

Despite its importance in somatic cells and during spermatogenesis, little is known about the role that autophagy may play in ejaculated spermatozoa. Our aim was to investigate whether the molecular components of autophagy, such as microtubule-associated protein 1 light chain 3 (LC3), are activated in stallion spermatozoa during the capacitation and acrosome reaction and if this activation could modulate these biological processes. To analyze the autophagy turnover, LC3I and LC3II proteins were assessed by western blotting, and the ratio between both proteins (LC3II/LC3I) was calculated. In somatic cells, this ratio indicates that autophagy has been activated and similar LC3 processing has been described in mammalian spermatozoa. The subcellular localization of autophagy-related proteins was assessed by immunofluorescence with specific antibodies that recognized Atg16, Beclin-1, and LC3. The colocalization of acrosomal membranes (PNA) and LC3 was studied by confocal microcopy, and the acrosome reacted cells were quantified by flow cytometry. The incubation of stallion sperm in capacitating conditions (BWW; 3 h) significantly increased LC3 processing. This increment was three to four times higher after the induction of the acrosome reaction in these cells. LC3 was mainly expressed in the head in mature ejaculated sperm showing a clear redistribution from the post-acrosomal region to the acrosome upon the incubation of sperm in capacitating conditions (BWW, 3 h). After the induction of the acrosome reaction, LC3 colocalized with the acrosome or the apical plasmalemma membranes in the head of the stallion spermatozoa. The inhibition or activation of autophagy-related pathways in the presence of autophagy activators (STF-62247) or inhibitors (E-64d, chloroquine) significantly increased LC3 processing and increased the percent of acrosome reacted cells, whereas 3-methyladenine almost completely inhibited LC3 processing and the acrosome reaction. In conclusion, we found that sperm capacitation and acrosome reaction could be regulated by autophagy components in sperm cells ex vivo by processes that might be independent of the intraluminal pH of the acrosome and dependent of LC3 lipidation. It can be speculated that, in stallion sperm, a form of noncanonical autophagy utilizes some components of autophagy machinery to facilitate the acrosome reaction.


Asunto(s)
Reacción Acrosómica , Acrosoma , Masculino , Caballos , Animales , Acrosoma/fisiología , Reacción Acrosómica/fisiología , Capacitación Espermática/fisiología , Semen , Espermatozoides/metabolismo , Autofagia , Mamíferos
8.
J Biomol Struct Dyn ; 41(4): 1342-1350, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-34931595

RESUMEN

The unavailability of a suitable treatment for human Hepatitis E virus (HEV) infection necessitate the development of anti HEV drugs. The HEV papain-like cysteine proteases (HEV PCP) is a crucial target to prevent viral replication and progression. E64 is a known HEV PCP inhibitor; however, its molecular mechanism of inhibition is not yet known. Since the crystal structure of HEV PCP is not available, the primary focuses of the present study was to refine the predicted HEV PCP structural model by molecular dynamics (MD) simulation. Further, we performed a 200 ns MD simulation to understand the structural complexity of HEV PCP and the effect of E64 binding with HEV PCP. The E64 binding with active site residues Gln48, Thr51, Gln55, Cys52, Ser81, Gln 98, Cys 132, Arg158, His159, Asn 160 and Ala96 leads to reduced fluctuations in the residue at N-terminal (18-41) that include the CHC motif (26-28). However, most of the other non interacting residues, including the inter-domain linker region (46-87), showed increased fluctuations in the HEV PCP-E64 complex. The residue Asp21 and Ala96 are involved in the formation of interdomain interactions in the HEV PCP apo enzyme. While in the PCP-E64 complex, E64 binds to Ala96 and creates a steric hindrance to prevent interdomain interactions. Thus, the E64 binding reduces interdomain interactions and restrict domain movements in the HEV PCP-E64 complex. This information will be important for the chemically designing more effective derivatives of E64 developing HEV PCP specific inhibitors.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Virus de la Hepatitis E , Proteasas Virales Similares a la Papaína , Humanos , Dominio Catalítico , Endopeptidasas , Virus de la Hepatitis E/enzimología , Virus de la Hepatitis E/fisiología , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Péptido Hidrolasas , Proteasas Virales Similares a la Papaína/antagonistas & inhibidores , Proteasas Virales Similares a la Papaína/metabolismo
9.
Cancer Cell ; 40(9): 1044-1059.e8, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-36099882

RESUMEN

Cisplatin-based chemotherapy remains the primary treatment for unresectable and metastatic muscle-invasive bladder cancers (MIBCs). However, tumors frequently develop chemoresistance. Here, we established a primary and orthotopic MIBC mouse model with gene-edited organoids to recapitulate the full course of chemotherapy in patients. We found that partial squamous differentiation, called semi-squamatization, is associated with acquired chemoresistance in both mice and human MIBCs. Multi-omics analyses showed that cathepsin H (CTSH) is correlated with chemoresistance and semi-squamatization. Cathepsin inhibition by E64 treatment induces full squamous differentiation and pyroptosis, and thus specifically restrains chemoresistant MIBCs. Mechanistically, E64 treatment activates the tumor necrosis factor pathway, which is required for the terminal differentiation and pyroptosis of chemoresistant MIBC cells. Our study revealed that semi-squamatization is a type of lineage plasticity associated with chemoresistance, suggesting that differentiation via targeting of CTSH is a potential therapeutic strategy for the treatment of chemoresistant MIBCs.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de la Vejiga Urinaria , Animales , Carcinoma de Células Escamosas/tratamiento farmacológico , Diferenciación Celular , Cisplatino , Humanos , Ratones , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología
10.
Biomolecules ; 12(7)2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35883560

RESUMEN

Glutamate excitotoxicity contributes to many neurodegenerative diseases. Excessive glutamate receptor-mediated calcium entry causes delayed calcium deregulation (DCD) that coincides with abrupt mitochondrial depolarization. We developed cA-TAT, a live-cell protease activity reporter based on a vimentin calpain cleavage site, to test whether glutamate increases protease activity in neuronal cell bodies prior to DCD. Treatment of rat cortical neurons with excitotoxic (100 µM) glutamate increased the low baseline rate of intracellular cA-TAT proteolysis by approximately three-fold prior to DCD and by approximately seven-fold upon calcium deregulation. The glutamate-induced rate enhancement prior to DCD was suppressed by glutamate receptor antagonists, but not by calpain or proteasome inhibitors, whereas DCD-stimulated proteolysis was partly attenuated by the proteasome inhibitor MG132. Further suggesting that cA-TAT cleavage is calpain-independent, cA-TAT fluorescence was observed in immortalized Capn4 knockout fibroblasts lacking the regulatory calpain subunit. About half of the neurons lost calcium homeostasis within two hours of a transient, 20 min glutamate receptor stimulation. These neurons had a significantly (49%) higher mean baseline cA-TAT proteolysis rate than those maintaining calcium homeostasis, suggesting that the unknown protease(s) cleaving cA-TAT may influence DCD susceptibility. Overall, the results indicate that excitotoxic glutamate triggers the activation of calpain-independent neuronal protease activity prior to the simultaneous loss of calcium homeostasis and mitochondrial bioenergetic function.


Asunto(s)
Calcio , Calpaína , Animales , Calcio/metabolismo , Calpaína/metabolismo , Células Cultivadas , Ácido Glutámico/metabolismo , Mitocondrias/metabolismo , Neuronas/metabolismo , Péptido Hidrolasas/metabolismo , Proteolisis , Ratas
11.
J Med Econ ; 25(1): 894-902, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35748085

RESUMEN

OBJECTIVES: Pricing, affordability, and access are important deliberations around infectious disease interventions. Determining a fair price that not only incentivizes development but ensures value and access for patients is critical given the increasing global health crisis. Using Ebola virus disease (EVD) as an exemplar, we aim to elucidate the estimation of a jurisdiction-specific value-based price (VBP) for a vaccine package and to consider how prices compare across selected countries that have experienced EVD outbreaks. METHODS: Using a dynamic transmission model, we assessed the cost-effectiveness of a vaccine package - composed of the vaccine, storage, maintenance, and administration - for vaccination toward herd immunity in 4 countries affected with EVD (Democratic Republic of Congo, Liberia, Sierra Leone, Uganda). Based on the cost-effectiveness metrics and using willingness-to-pay thresholds equal to varying percentages of the Gross Domestic Product (GDP), we demonstrated how a VBP is calculated using a cost-effectiveness-based approach. RESULTS: The VBP for the vaccine is directly proportional to effectiveness (DALYs prevented), cost-effectiveness (ICER) and GDP per capita. Higher effectiveness, greater cost-effectiveness, and higher GDP per capita resulted in higher price ceilings compared to lower cost-effectiveness and lower GDP. CONCLUSION: Despite the concerns with the cost-effectiveness-based approach, we illustrated that it is an easily comprehensible method for determining the VBP of a vaccine using cost-effectiveness analysis. Choice of data, population characteristics, and disease dynamics are among the factors that need to be considered when comparisons are made across countries.


In infectious diseases, issues related to pricing, affordability and access to interventions are very important; particularly in low-income countries (LIC) because of the scarcity of resources coupled with several competing priorities. Pricing interventions fairly in LICs facilitates the prevention and management of infectious diseases, promotes innovation, and ensures patient access to valuable interventions. We were interested in determining a fair price of an intervention for an infectious disease (here, vaccination against Ebola virus disease) based on the cost-effectiveness (or value) of vaccination in four African countries.Using data from EVD outbreaks in Liberia, the Democratic Republic of Congo, Uganda, and Sierra Leone, we estimated the number of susceptible people who were exposed to the virus, became infected, recovered, or died. We did this for two scenarios: not vaccinating versus vaccinating to achieve herd immunity. We determined how many disability-adjusted life years (DALY; loss of the equivalent of a year of full health) would be prevented by vaccination; setting this as our value metric. Using this value metric and percentages of the gross domestic product (GDP) per capita as the willingness-to-pay (WTP) threshold (the price a payer might be prepared to pay for the intervention) we demonstrate how to calculate the maximum price for the vaccine package.The combination of greater effectiveness (DALYs averted), greater cost-effectiveness (value) and higher GDP per capita (WTP) resulted in different price ceilings in the four countries. The method proposed here is easy to understand and requires minimum data to determine a price for an intervention's price based on its value.


Asunto(s)
Vacunas contra el Virus del Ébola , Fiebre Hemorrágica Ebola , Análisis Costo-Beneficio , Salud Global , Fiebre Hemorrágica Ebola/prevención & control , Humanos
12.
Genes (Basel) ; 13(2)2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35205369

RESUMEN

Recovery of bovine oocytes using the ovum pick-up (OPU) technique offers the advantage of rapid genetic improvement through propagation of desired genes from animals with high genetic qualities. However, the developmental competence of OPU-derived immature oocytes remains relatively poor. We previously found that cathepsin B gene expression and activity are increased in poor quality oocytes and embryos compared to good quality ones. In this study, we investigated the effect of E-64 (cathepsin B inhibitor) supplementation during in vitro maturation (IVM) on the developmental competence of OPU-derived immature oocytes and the quality of the produced blastocysts. Our results showed that supplementation of IVM medium with E-64 significantly improved the developmental competence of OPU-derived immature oocytes as evidenced by the significant increase of the blastocyst rate. Importantly, the presence of E-64 during IVM also significantly improved blastocyst quality by increasing the total cell number and decreasing the percentage of TUNEL positive cells. These results indicate that E-64 supplementation during IVM is a promising tool to improve the efficiency of OPU-IVF program by improving the developmental competence of OPU-derived immature oocytes.


Asunto(s)
Catepsina B , Fertilización In Vitro , Animales , Catepsina B/genética , Catepsina B/metabolismo , Bovinos , Suplementos Dietéticos , Leucina/análogos & derivados , Oocitos/metabolismo
13.
Pharmacol Res ; 174: 105933, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34634471

RESUMEN

Ischemic stroke poses a significant health risk due to its high rate of disability and mortality. To address this problem, several therapeutic approaches have been proposed, including interruption targeting programmed cell death (PCD). Ferroptosis is a newly defined PCD characterized by iron-dependent accumulation of lipid peroxidation, and is becoming a promising target for treating numerous diseases. To explore the underlying mechanisms of the initiation and execution of ferroptosis in ischemic stroke, we established stroke models in vivo and in vitro simulating ischemia/reperfusion (I/R) neuronal injury. Different from previous reports on stroke, we tested ferroptosis by measuring the levels of core proteins, such as ACSL4, 15-LOX2, Ferritin and GPX4. In addition, I/R injury induces excessive degradation of ferritin via the autophagy pathway and subsequent increase of free iron in neurons. This phenomenon has recently been termed ferritinophagy and reported to be regulated by nuclear receptor coactivator 4 (NCOA4) in some cell lines. Increased NCOA4 in cytoplasm was detected in our study and then silenced by shRNA to investigate its function. Both in vivo and in vitro, NCOA4 deletion notably abrogated ferritinophagy caused by I/R injury and thus inhibited ferroptosis. Furthermore, we found that NCOA4 was upregulated by ubiquitin specific peptidase 14 (USP14) via a deubiquitination process in damaged neurons, and we found evidence of pharmacological inhibition of USP14 effectively reducing NCOA4 levels to protect neurons from ferritinophagy-mediated ferroptosis. These findings suggest a novel and effective target for treating ischemic stroke.


Asunto(s)
Ferroptosis , Infarto de la Arteria Cerebral Media , Accidente Cerebrovascular Isquémico , Coactivadores de Receptor Nuclear , Daño por Reperfusión , Animales , Encéfalo/metabolismo , Células Cultivadas , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Infarto de la Arteria Cerebral Media/genética , Infarto de la Arteria Cerebral Media/metabolismo , Accidente Cerebrovascular Isquémico/genética , Accidente Cerebrovascular Isquémico/metabolismo , Peroxidación de Lípido , Masculino , Malondialdehído/metabolismo , Ratones Endogámicos C57BL , Neuronas/metabolismo , Coactivadores de Receptor Nuclear/genética , Coactivadores de Receptor Nuclear/metabolismo , Pirroles/farmacología , Pirrolidinas/farmacología , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo , Ubiquitina Tiolesterasa/antagonistas & inhibidores , Ubiquitina Tiolesterasa/metabolismo
14.
Adv Clin Exp Med ; 30(3): 323-330, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33784442

RESUMEN

BACKGROUND: The activity of autogenic proteolytic enzymes is regulated in vivo by autogenic inhibitors. They play important roles in maintaining a balance in many processes in the human body. In pathological conditions, enzymes are overexpressed and the balance is disturbed. Such uncontrolled changes may lead to the development of local or systemic cancer. OBJECTIVES: To evaluate the effects of specific inhibitors, i.e., chicken egg white cystatin (CEWC) and proteinase inhibitor (E-64) on autogenic cysteine peptidases (CPs) in the sera of patients reporting for subsequent stages of treatment after being diagnosed with breast cancer. Cysteine peptidases play a vital role in the basic processes that are associated with cancer progression. MATERIAL AND METHODS: We selected serum samples from 108 patients with a diagnosis of breast cancer (stages IIA-IIIA) who had received no previous treatment. The blood samples were centrifuged, and the resulting serum was placed in liquid nitrogen and stored at -80°C. The biochemical tests were performed at the laboratory of the Department of Physical Chemistry and Microbiology. RESULTS: For CEWC, we found an inhibitory effect in 37 out of 108 samples; for E-64, 14 out of 22 samples displayed an inhibitory effect. In the remaining blood samples, these inhibitors caused an increase in fluorescence. In a parallel test, we added pure cathepsin B to 9 serum samples, and then used CEWC to inhibit the activity of autogenic CPs. Chicken egg white cystatin completely inhibited the cathepsin B that was added to the serum without changing its effect on the autogenic CPs. CONCLUSIONS: The results suggest that there may be a potential difference between the commercially available cathepsin B and its autogenic analogues found in the serum of cancer patients. The increase in fluorescence induced in the reaction between the inhibitors and autogenic CPs is still unexplained. There was no relationship between the observed inhibition/activation of CPs and any of the available indicators of the health of the patients examined.


Asunto(s)
Neoplasias de la Mama , Cistatinas , Animales , Neoplasias de la Mama/tratamiento farmacológico , Pollos , Cisteína , Clara de Huevo , Humanos
15.
Bioorg Med Chem ; 35: 116055, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33607487

RESUMEN

African swine fever (ASF) is a viral disease in swine that results in high mortality in domestic pigs and causes considerable economic losses. Currently, there is no effective vaccine or drugs available for treatment. Identification of new anti-ASFV drugs is urgently needed. Here, the pS273R protein of the African swine fever virus (ASFV) is a specific SUMO-1-like cysteine protease that plays an important role in its replication process. To inhibit virus replication and improve treatment options, a set of small-molecule compounds, targeted inhibitors against the ASFV pS273R protease, were obtained through molecular screening by homology modeling and molecular docking based on structural information of pS273R. Our results clearly demonstrated that the 14th carbon atom of the cysteinase inhibitor E-64 could form one CS covalent bond with the Cys 232 amino acid of the pS273R protease and seven additional hydrogen bonds to maintain a stable binding state. Simultaneously, cell viability, immunophenotyping, and in vitro enzyme activity inhibition assays were performed to comprehensively evaluate E-64 characteristics. Our findings demonstrated that 4 mmol/L E-64 could effectively inhibit the enzyme activity center of the pS273R protease by preventing pS273R protease from lysing pp62, while promoting the upregulation of immune-related cytokines at the transcription level. Moreover, cell viability results revealed that 4 mmol/L E-64 was not cytotoxic. Taken together, we identified a novel strategy to potentially prevent ASFV infection in pigs by blocking the activity of pS273R protease with a small-molecule inhibitor.


Asunto(s)
Virus de la Fiebre Porcina Africana/enzimología , Proteasas de Cisteína/metabolismo , Inhibidores de Cisteína Proteinasa/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Proteínas Virales/antagonistas & inhibidores , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Inhibidores de Cisteína Proteinasa/química , Relación Dosis-Respuesta a Droga , Modelos Moleculares , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Porcinos , Proteínas Virales/metabolismo , Replicación Viral/efectos de los fármacos
16.
Molecules ; 25(3)2020 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-32041276

RESUMEN

Human cathepsin L belongs to the cathepsin family of proteolytic enzymes with primarily an endopeptidase activity. Although its primary functions were originally thought to be only of a housekeeping enzyme that degraded intracellular and endocytosed proteins in lysosome, numerous recent studies suggest that it plays many critical and specific roles in diverse cellular settings. Not surprisingly, the dysregulated function of cathepsin L has manifested itself in several human diseases, making it an attractive target for drug development. Unfortunately, several redundant and isoform-specific functions have recently emerged, adding complexities to the drug discovery process. To address this, a series of chemical biology tools have been developed that helped define cathepsin L biology with exquisite precision in specific cellular contexts. This review elaborates on the recently developed small molecule inhibitors and probes of human cathepsin L, outlining their mechanisms of action, and describing their potential utilities in dissecting unknown function.


Asunto(s)
Catepsina L/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Descubrimiento de Drogas/métodos , Humanos , Lisosomas/metabolismo
17.
J Food Sci ; 85(3): 535-544, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32027028

RESUMEN

In this study, we characterized protease activities of 23 Ficus carica cultivars. Extracts of fruit, branch, and leaf of Masui Dauphine, one of the most representative F. carica cultivars in Japan, exhibited gelatin-hydrolyzing activity, both in the absence and presence of a cysteine protease-specific inhibitor, E-64, suggesting that not only ficin (classified as cysteine protease) but also collagenase (classified as serine protease) were involved in the digestion of gelatin. In the hydrolysis of (7-methoxycoumarin-4-yl)acetyl-l-Lys-l-Pro-l-Leu-Gly-l-Leu-[N3 -(2,4-dinitrophenyl)-l-2,3-diaminopropionyl]-l-Ala-l-Arg-NH2 , all branch extracts of 23 F. carica cultivars exhibited the activity both in the absence and presence of cysteine protease-specific inhibitor E-64, indicating that they contain ficin and collagenase. During digestion of acid-solubilized type I collagen by the branch extract of Masui Dauphine at 40-55 °C, collagen was completely digested in the absence of E-64, while it was partially digested in the presence of the inhibitor, indicating that the manner of digestion differed between ficin and collagenase contained in the extract. These results suggest that F. carica is attractive for industrial use to digest collagen. PRACTICAL APPLICATION: The industrial use of F. carica might be enhanced by efficiently utilizing these proteases and/or selecting the appropriate F. carica cultivar. Collagen is one of the targets to which our results might be applied. It is widely accepted today that collagen and its digestion products could be useful as functional food. F. carica is a potential candidate for use in not only complete but also partial digestion of collagen.


Asunto(s)
Ficus/enzimología , Péptido Hidrolasas/química , Proteínas de Plantas/química , Biocatálisis , Colágeno/química , Ficus/química , Ficus/clasificación , Ficus/genética , Frutas/química , Frutas/enzimología , Frutas/genética , Japón , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Hojas de la Planta/química , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteolisis
18.
Food Res Int ; 127: 108689, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31882081

RESUMEN

This work reports the characterisation of caseinolytic and milk-clotting activities of proteases extracted from ripe fruits of Morinda citrifolia L., as a potential of their use in cheese production. Noni puree extract (NPE) was obtained by homogenising the fresh puree in 150 mM NaCl/50 mM sodium phosphate buffer (pH 7.0). The resulting protein concentration was of 0.367 ±â€¯0.006 mg/mL, and an electrophoretic profile of the extract revealed protein bands ranging from 14 to 55 kDa. The proteolytic activity of NPE was higher when the extract had been previously incubated at pH 6.0 (8.859 ±â€¯0.216 U/mg), whereas the optimum caseinolytic activity was observed at 50 °C. Noni puree proteases were strongly (98%) inhibited by iodoacetamide and E-64, suggesting the presence of only cysteine proteases in the crude extract. NPE proteases showed a milk-clotting activity (MCA) of 238.80 ±â€¯5.29 U/mL, a specific milk-clotting activity (SMCA) of 9950.17 ±â€¯220.74 U/mg, and an SMCA/PA ratio of 1124.31 ±â€¯24.94, this last being comparable to those of commercial calf rennet. The cheese manufactured using NPE presented brittle and soft texture, high humidity, and showed sanitary conditions compatible with current Brazilian regulations. The product showed a slightly bitter taste, but still good acceptability, rating between 6 and 7 in the hedonic scale for flavour, texture, and overall acceptance. Lastly, there was 60% of positive purchase intent, demonstrating that noni fruit is a promising source of milk-clotting enzymes for the dairy industry.


Asunto(s)
Queso , Proteasas de Cisteína/metabolismo , Frutas/metabolismo , Leche/metabolismo , Morinda/metabolismo , Extractos Vegetales/metabolismo , Animales , Brasil , Manipulación de Alimentos/métodos
19.
Front Plant Sci ; 10: 1604, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31850051

RESUMEN

Autophagy is an essential system for degrading and recycling cellular components for survival during starvation conditions. Under sucrose starvation, application of a papain protease inhibitor E-64d to the Arabidopsis root and tobacco BY-2 cells induced the accumulation of vesicles, labeled with a fluorescent membrane marker FM4-64. The E-64d-induced vesicle accumulation was reduced in the mutant defective in autophagy-related genes ATG2, ATG5, and ATG7, suggesting autophagy is involved in the formation of these vesicles. To clarify the formation of these vesicles in detail, we monitored time-dependent changes of tonoplast, and vesicle accumulation in sucrose-starved cells. We found that these vesicles were derived from the tonoplast and produced by microautophagic process. The tonoplast proteins were excluded from the vesicles, suggesting that the vesicles are generated from specific membrane domains. Concanamycin A treatment in GFP-ATG8a transgenic plants showed that not all FM4-64-labeled vesicles, which were derived from the tonoplast, contained the ATG8a-containing structure. These results suggest that ATG8a may not always be necessary for microautophagy.

20.
Environ Pollut ; 237: 414-423, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29502004

RESUMEN

With the commercialization of transgenic cotton that expresses Bt (Bacillus thuringiensis) insecticidal proteins, mirid bugs have become key pests in cotton and maize fields in China. Genetically engineered (GE) crops for controlling mirids are unavailable owing to a lack of suitable insecticidal genes. In this study, we developed and validated a dietary exposure assay for screening insecticidal compounds and for assessing the potential effects of insecticidal proteins produced by GE plants on Apolygus lucorum, one of the main mirid pests of Bt cotton and Bt maize. Diets containing potassium arsenate (PA) or the cysteine protease inhibitor E-64 were used as positive controls for validating the efficacy of the dietary exposure assay. The results showed that with increasing concentrations of PA or E-64, A. lucorum larval development time was prolonged and adult weight and fecundity were decreased, suggesting that the dietary exposure assay was useful for detecting the toxicity of insecticidal compounds to A. lucorum. This assay was then used to assess the toxicity of Cry1Ab, Cry1Ac, Cry1F, Cry2Aa, and Cry2Ab proteins, which have been transformed into several crops, against A. lucorum. The results showed that A. lucorum did not show a negative effect by feeding on an artificial diet containing any of the purified Cry proteins. No significant changes in the activities of digestive, detoxifying, or antioxidant enzymes were detected in A. lucorum that fed on a diet containing Cry proteins, but A. lucorum fitness was reduced when the insect fed on a diet containing E-64 or PA. These results demonstrate that A. lucorum is not sensitive to the tested Cry proteins and that the dietary exposure assay is useful for evaluating the toxicity of insecticidal compounds to this species.


Asunto(s)
Bioensayo/métodos , Exposición Dietética/análisis , Heterópteros/fisiología , Insecticidas/toxicidad , Animales , Bacillus thuringiensis , Proteínas Bacterianas , China , Productos Agrícolas , Dieta , Endotoxinas , Fertilidad/efectos de los fármacos , Proteínas Hemolisinas , Insecticidas/análisis , Plantas Modificadas Genéticamente , Zea mays
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA